toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Pick, D.F.; Lovell, G.; Brown, S.; Dail, D. url  doi
openurl 
  Title Equine color perception revisited Type Journal Article
  Year 1994 Publication Applied Animal Behaviour Science Abbreviated Journal Appl. Anim. Behav. Sci.  
  Volume 42 Issue (up) 1 Pages 61-65  
  Keywords Equine; Color perception; Dichromat  
  Abstract An attempt to replicate Grzimek (1952; Z. Tierpsychol., 27: 330-338) is reported where a Quarter-Horse mare chose between colored and gray stimuli for food reinforcement. Stimuli varied across a broad range of reflectance values. A double-blind procedure with additional controls for auditory, olfactory, tactile, and position cues was used. The subject could reliably discriminate blue (462 nm) vs. gray, and red (700 nm) vs. gray without regard to reflectance (P<0.001), but could not discriminate green (496 nm) vs. gray. It is suggested that horses are dichromats in a manner similar to swine and cattle.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Equine Behaviour @ team @ Serial 4368  
Permanent link to this record
 

 
Author Zentall, T.R.; Roper, K.L.; Sherburne, L.M. doi  openurl
  Title Most directed forgetting in pigeons can be attributed to the absence of reinforcement on forget trials during training or to other procedural artifacts Type Journal Article
  Year 1995 Publication Journal of the experimental analysis of behavior Abbreviated Journal J Exp Anal Behav  
  Volume 63 Issue (up) 2 Pages 127-137  
  Keywords Animals; *Attention; Color Perception; Columbidae; Cues; *Discrimination Learning; *Mental Recall; Motivation; Pattern Recognition, Visual; *Reinforcement Schedule; Retention (Psychology)  
  Abstract In research on directed forgetting in pigeons using delayed matching procedures, remember cues, presented in the delay interval between sample and comparisons, have been followed by comparisons (i.e., a memory test), whereas forget cues have been followed by one of a number of different sample-independent events. The source of directed forgetting in delayed matching to sample in pigeons was examined in a 2 x 2 design by independently manipulating whether or not forget-cue trials in training ended with reinforcement and whether or not forget-cue trials in training included a simultaneous discrimination (involving stimuli other than those used in the matching task). Results were consistent with the hypothesis that reinforced responding following forget cues is sufficient to eliminate performance deficits on forget-cue probe trials. Only when reinforcement was omitted on forget-cue trials in training (whether a discrimination was required or not) was there a decrement in accuracy on forget-cue probe trials. When reinforcement is present, however, the pattern of responding established during and following a forget cue in training may also play a role in the directed forgetting effect. These findings support the view that much of the evidence for directed forgetting using matching procedures may result from motivational and behavioral artifacts rather than the loss of memory.  
  Address Department of Psychology, University of Kentucky, Lexington 40506  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-5002 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:7714447 Approved no  
  Call Number refbase @ user @ Serial 256  
Permanent link to this record
 

 
Author Zentall, T.R.; Sherburne, L.M. openurl 
  Title Transfer of value from S+ to S- in a simultaneous discrimination Type Journal Article
  Year 1994 Publication Journal of experimental psychology. Animal behavior processes Abbreviated Journal J Exp Psychol Anim Behav Process  
  Volume 20 Issue (up) 2 Pages 176-183  
  Keywords Animals; *Appetitive Behavior; Attention; Color Perception; Columbidae; *Discrimination Learning; Female; Male; Motivation; Orientation; Pattern Recognition, Visual; *Problem Solving; *Reinforcement Schedule; *Transfer (Psychology)  
  Abstract Value transfer theory has been proposed to account for transitive inference effects (L. V. Fersen, C. D. L. Wynne, J. D. Delius, & J. E. R. Staddon, 1991), in which following training on 4 simultaneous discriminations (A+B-, B+C-, C+D-, D+E-) pigeons show a preference for B over D. According to this theory, some of the value of reinforcement acquired by each S+ transfers to the S-. In the transitive inference experiment, C (associated with both reward and nonreward) can transfer less value to D than A (associated only with reward) can transfer to B. Support for value transfer theory was demonstrated in 2 experiments in which an S- presented in the context of a stimulus to which responses were always reinforced (S+) was preferred over an S- presented in the context of a stimulus to which responses were sometimes reinforced (S +/-).  
  Address Department of Psychology, University of Kentucky, Lexington 40506  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0097-7403 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:8189186 Approved no  
  Call Number refbase @ user @ Serial 258  
Permanent link to this record
 

 
Author Urcuioli, P.J.; Zentall, T.R. openurl 
  Title Transfer across delayed discriminations: evidence regarding the nature of prospective working memory Type Journal Article
  Year 1992 Publication Journal of experimental psychology. Animal behavior processes Abbreviated Journal J Exp Psychol Anim Behav Process  
  Volume 18 Issue (up) 2 Pages 154-173  
  Keywords Animals; *Appetitive Behavior; Attention; *Color Perception; Columbidae; *Discrimination Learning; *Mental Recall; *Pattern Recognition, Visual; Problem Solving; Retention (Psychology); *Transfer (Psychology)  
  Abstract Pigeons were trained successively either on 2 delayed simple discriminations or on a delayed simple discrimination followed by delayed matching-to-sample. During subsequent transfer tests, the initial stimuli from the 1st task were substituted for those in the 2nd. Performances transferred immediately if both sets of initial stimuli had been associated with the presence versus absence of food on their respective retention tests, and the direction of transfer (positive or negative) depended on whether the substitution involved stimuli with identical or different outcome associates. No transfer was found, however, when the initial stimuli were associated with different patterns of responding but food occurred at the end of every trial. These results are consistent with outcome expectancy mediation but are incompatible with response intention and retrospective coding accounts.  
  Address Department of Psychological Sciences, Purdue University, West Lafayette, Indiana 47907-1364  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0097-7403 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:1583445 Approved no  
  Call Number refbase @ user @ Serial 260  
Permanent link to this record
 

 
Author Zentall, T.R.; Jackson-Smith, P.; Jagielo, J.A.; Nallan, G.B. openurl 
  Title Categorical shape and color coding by pigeons Type Journal Article
  Year 1986 Publication Journal of experimental psychology. Animal behavior processes Abbreviated Journal J Exp Psychol Anim Behav Process  
  Volume 12 Issue (up) 2 Pages 153-159  
  Keywords Animals; *Color Perception; Columbidae; *Discrimination Learning; *Form Perception; *Generalization, Stimulus; Psychophysics; Transfer (Psychology)  
  Abstract Categorical coding is the tendency to respond similarly to discriminated stimuli. Past research indicates that pigeons can categorize colors according to at least three spectral regions. Two present experiments assessed the categorical coding of shapes and the existence of a higher order color category (all colors). Pigeons were trained on two independent tasks (matching-to-sample, and oddity-from-sample). One task involved red and a plus sign, the other a circle and green. On test trials one of the two comparison stimuli from one task was replaced by one of the stimuli from the other task. Differential performance based on which of the two stimuli from the other task was introduced suggested categorical coding rules. In Experiment 1 evidence for the categorical coding of sample shapes was found. Categorical color coding was also found; however, it was the comparison stimuli rather than the samples that were categorically coded. Experiment 2 replicated the categorical shape sample effect and ruled out the possibility that the particular colors used were responsible for the categorical coding of comparison stimuli. Overall, the results indicate that pigeons can develop categorical rules involving shapes and colors and that the color categories can be hierarchical.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0097-7403 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:3701264 Approved no  
  Call Number refbase @ user @ Serial 262  
Permanent link to this record
 

 
Author Shettleworth, S.J. doi  openurl
  Title Memory and hippocampal specialization in food-storing birds: challenges for research on comparative cognition Type Journal Article
  Year 2003 Publication Brain, behavior and evolution Abbreviated Journal Brain Behav Evol  
  Volume 62 Issue (up) 2 Pages 108-116  
  Keywords Animals; Birds/*physiology; Cognition/*physiology; Color Perception/physiology; Feeding Behavior/*physiology; Hippocampus/*physiology; Memory/*physiology; Species Specificity  
  Abstract The three-way association among food-storing behavior, spatial memory, and hippocampal enlargement in some species of birds is widely cited as an example of a new 'cognitive ecology' or 'neuroecology.' Whether this relationship is as strong as it first appears and whether it might be evidence for an adaptive specialization of memory and hippocampus in food-storers have recently been the subject of some controversy [Bolhuis and Macphail, 2001; Macphail and Bolhuis, 2001]. These critiques are based on misconceptions about the nature of adaptive specializations in cognition, misconceptions about the uniformity of results to be expected from applying the comparative method to data from a wide range of species, and a narrow view of what kinds of cognitive adaptations are theoretically interesting. New analyses of why food-storers (black-capped chickadees, Poecile Atricapilla) respond preferentially to spatial over color cues when both are relevant in a memory task show that this reflects a relative superiority of spatial memory as compared to memory for color rather than exceptional spatial attention or spatial discrimination ability. New studies of chickadees from more or less harsh winter climates also support the adaptive specialization hypothesis and suggest that within-species comparisons may be especially valuable for unraveling details of the relationships among ecology, memory, and brain in food-storing species.  
  Address Department of Psychology, University of Toronto, Toronto, Ont., M5S 3G3, Canada. shettle@psych.utoronto.ca  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0006-8977 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:12937349 Approved no  
  Call Number refbase @ user @ Serial 367  
Permanent link to this record
 

 
Author Vonk, J. doi  openurl
  Title Gorilla ( Gorilla gorilla gorilla) and orangutan ( Pongo abelii) understanding of first- and second-order relations Type Journal Article
  Year 2003 Publication Animal Cognition Abbreviated Journal Anim. Cogn.  
  Volume 6 Issue (up) 2 Pages 77-86  
  Keywords Animals; *Cognition; Color Perception; Female; Gorilla gorilla/*psychology; Male; Pongo pygmaeus/*psychology; Task Performance and Analysis  
  Abstract Four orangutans and one gorilla matched images in a delayed matching-to-sample (DMTS) task based on the relationship between items depicted in those images, thus demonstrating understanding of both first- and second-order relations. Subjects matched items on the basis of identity, color, or shape (first-order relations, experiment 1) or same shape, same color between items (second-order relations, experiment 2). Four of the five subjects performed above chance on the second-order relations DMTS task within the first block of five sessions. High levels of performance on this task did not result from reliance on perceptual feature matching and thus indicate the capability for abstract relational concepts in two species of great ape.  
  Address York University, 4700 Keele Street,Toronto, ON M3J 1P3, Canada. jxv9592@louisiana.edu  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1435-9448 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:12687418 Approved no  
  Call Number Equine Behaviour @ team @ Serial 2578  
Permanent link to this record
 

 
Author Carroll, J.; Murphy, C.J.; Neitz, M.; Hoeve, J.N.; Neitz, J. doi  openurl
  Title Photopigment basis for dichromatic color vision in the horse Type Journal Article
  Year 2001 Publication Journal of Vision Abbreviated Journal J Vis  
  Volume 1 Issue (up) 2 Pages 80-87  
  Keywords Adaptation, Physiological; Animals; Color Perception/*physiology; Cones (Retina)/chemistry/*physiology; Electroretinography; Horses/*physiology; Photic Stimulation; Phototransduction/physiology; Retinal Pigments/analysis/*physiology; Visual Perception/physiology  
  Abstract Horses, like other ungulates, are active in the day, at dusk, dawn, and night; and, they have eyes designed to have both high sensitivity for vision in dim light and good visual acuity under higher light levels (Walls, 1942). Typically, daytime activity is associated with the presence of multiple cone classes and color-vision capacity (Jacobs, 1993). Previous studies in other ungulates, such as pigs, goats, cows, sheep and deer, have shown that they have two spectrally different cone types, and hence, at least the photopigment basis for dichromatic color vision (Neitz & Jacobs, 1989; Jacobs, Deegan II, Neitz, Murphy, Miller, & Marchinton, 1994; Jacobs, Deegan II, & Neitz, 1998). Here, electroretinogram flicker photometry was used to measure the spectral sensitivities of the cones in the domestic horse (Equus caballus). Two distinct spectral mechanisms were identified and are consistent with the presence of a short-wavelength-sensitive (S) and a middle-to-long-wavelength-sensitive (M/L) cone. The spectral sensitivity of the S cone was estimated to have a peak of 428 nm, while the M/L cone had a peak of 539 nm. These two cone types would provide the basis for dichromatic color vision consistent with recent results from behavioral testing of horses (Macuda & Timney, 1999; Macuda & Timney, 2000; Timney & Macuda, 2001). The spectral peak of the M/L cone photopigment measured here, in vivo, is similar to that obtained when the gene was sequenced, cloned, and expressed in vitro (Yokoyama & Radlwimmer, 1999). Of the ungulates that have been studied to date, all have the photopigment basis for dichromatic color vision; however, they differ considerably from one another in the spectral tuning of their cone pigments. These differences may represent adaptations to the different visual requirements of different species.  
  Address Department of Cell Biology, Neurobiology & Anatomy, Medical College of Wisconsin, Milwaukee, WI, USA  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1534-7362 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:12678603 Approved no  
  Call Number Equine Behaviour @ team @ Serial 4060  
Permanent link to this record
 

 
Author Yokoyama, S.; Radlwimmer, F.B. url  openurl
  Title The molecular genetics of red and green color vision in mammals Type Journal Article
  Year 1999 Publication Genetics Abbreviated Journal Genetics  
  Volume 153 Issue (up) 2 Pages 919-932  
  Keywords Amino Acid Sequence; Animals; Base Sequence; COS Cells; Cats; Color Perception/*genetics; DNA Primers; Deer; Dolphins; *Evolution, Molecular; Goats; Guinea Pigs; Horses; Humans; Mammals/*genetics/physiology; Mice; Molecular Sequence Data; Opsin/biosynthesis/chemistry/*genetics; *Phylogeny; Rabbits; Rats; Recombinant Proteins/biosynthesis; Reverse Transcriptase Polymerase Chain Reaction; Sciuridae; Sequence Alignment; Sequence Homology, Amino Acid; Transfection  
  Abstract To elucidate the molecular mechanisms of red-green color vision in mammals, we have cloned and sequenced the red and green opsin cDNAs of cat (Felis catus), horse (Equus caballus), gray squirrel (Sciurus carolinensis), white-tailed deer (Odocoileus virginianus), and guinea pig (Cavia porcellus). These opsins were expressed in COS1 cells and reconstituted with 11-cis-retinal. The purified visual pigments of the cat, horse, squirrel, deer, and guinea pig have lambdamax values at 553, 545, 532, 531, and 516 nm, respectively, which are precise to within +/-1 nm. We also regenerated the “true” red pigment of goldfish (Carassius auratus), which has a lambdamax value at 559 +/- 4 nm. Multiple linear regression analyses show that S180A, H197Y, Y277F, T285A, and A308S shift the lambdamax values of the red and green pigments in mammals toward blue by 7, 28, 7, 15, and 16 nm, respectively, and the reverse amino acid changes toward red by the same extents. The additive effects of these amino acid changes fully explain the red-green color vision in a wide range of mammalian species, goldfish, American chameleon (Anolis carolinensis), and pigeon (Columba livia).  
  Address Department of Biology, Syracuse University, Syracuse, New York 13244, USA. syokoyam@mailbox.syr.edu  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0016-6731 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:10511567 Approved no  
  Call Number Equine Behaviour @ team @ Serial 4063  
Permanent link to this record
 

 
Author Wolfe, J.M. openurl 
  Title Hidden visual processes Type Journal Article
  Year 1983 Publication Scientific American Abbreviated Journal Sci Am  
  Volume 248 Issue (up) 2 Pages 94-103  
  Keywords Color Perception/*physiology; Humans; Motion Perception/physiology; Ocular Physiology; Vision; Visual Perception/*physiology  
  Abstract Isoluminant stimulus is an image whose edges are defined only by a change in color, not by change in brightness. The stimulus here is imperfect: the blue parts and the green parts of the image are only as nearly equal in brightness as they can be on the printed page. Moreover, the change in brightness beyond the edge of the page is apparent, and so is the fact that the reader is holding the magazine at reading distance. When such cues are removed under laboratory conditions, subjects faced with an isoluminant stimulus prove unable to bring its edges into focus. This deficiency contributes to making a familiar face hard to recognize. The experiment indicates that the brain process underlying visual accommodation (the focusing of the eyes) cannot “see” color; it is a hidden process distinct from the processes that lead to perception. The image shows Groucho Marx as he appeared in the motion picture Horse Feathers.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0036-8733 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:6836258 Approved no  
  Call Number Equine Behaviour @ team @ Serial 4066  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print