|   | 
Details
   web
Records
Author Bode, N.W.F.; Faria, J.J.; Franks, D.W.; Krause, J.; Wood, A.J.
Title How perceived threat increases synchronization in collectively moving animal groups Type Journal Article
Year 2010 Publication Proceedings of the Royal Society B: Biological Sciences Abbreviated Journal Proc. Roy. Soc. Lond. B Biol. Sci.
Volume 277 Issue 1697 Pages (up) 3065-3070
Keywords
Abstract Nature is rich with many different examples of the cohesive motion of animals. Previous attempts to model collective motion have primarily focused on group behaviours of identical individuals. In contrast, we put our emphasis on modelling the contributions of different individual-level characteristics within such groups by using stochastic asynchronous updating of individual positions and orientations. Our model predicts that higher updating frequency, which we relate to perceived threat, leads to more synchronized group movement, with speed and nearest-neighbour distributions becoming more uniform. Experiments with three-spined sticklebacks (Gasterosteus aculeatus) that were exposed to different threat levels provide strong empirical support for our predictions. Our results suggest that the behaviour of fish (at different states of agitation) can be explained by a single parameter in our model: the updating frequency. We postulate a mechanism for collective behavioural changes in different environment-induced contexts, and explain our findings with reference to confusion and oddity effects.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes 10.1098/rspb.2010.0855 Approved no
Call Number Equine Behaviour @ team @ Serial 5188
Permanent link to this record
 

 
Author Fraser, O.N.; Bugnyar, T.
Title Do Ravens Show Consolation? Responses to Distressed Others Type Journal Article
Year 2010 Publication PLoS ONE Abbreviated Journal PLoS ONE
Volume 5 Issue 5 Pages (up) e10605
Keywords
Abstract <sec> <title>Background</title> <p>Bystander affiliation (post-conflict affiliation from an uninvolved bystander to the conflict victim) may represent an expression of empathy in which the bystander consoles the victim to alleviate the victim's distress (“consolation”). However, alternative hypotheses for the function of bystander affiliation also exist. Determining whether ravens spontaneously offer consolation to distressed partners may not only help us to understand how animals deal with the costs of aggressive conflict, but may also play an important role in the empathy debate.</p> </sec><sec> <title>Methodology/Principal findings</title> <p>This study investigates the post-conflict behavior of ravens, applying the predictive framework for the function of bystander affiliation for the first time in a non-ape species. We found weak evidence for reconciliation (post-conflict affiliation between former opponents), but strong evidence for both bystander affiliation and solicited bystander affiliation (post-conflict affiliation from the victim to a bystander). Bystanders involved in both interactions were likely to share a valuable relationship with the victim. Bystander affiliation offered to the victim was more likely to occur after intense conflicts. Renewed aggression was less likely to occur after the victim solicited affiliation from a bystander.</p> </sec><sec> <title>Conclusions/Significance</title> <p>Our findings suggest that in ravens, bystanders may console victims with whom they share a valuable relationship, thus alleviating the victims' post-conflict distress. Conversely victims may affiliate with bystanders after a conflict in order to reduce the likelihood of renewed aggression. These results stress the importance of relationship quality in determining the occurrence and function of post-conflict interactions, and show that ravens may be sensitive to the emotions of others.</p> </sec>
Address
Corporate Author Thesis
Publisher Public Library of Science Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Equine Behaviour @ team @ Serial 5195
Permanent link to this record
 

 
Author Ecker, C.; Marquand, A.; Mourao-Miranda, J.; Johnston, P.; Daly, E.M.; Brammer, M.J.; Maltezos, S.; Murphy, C.M.; Robertson, D.; Williams, S.C.; Murphy, D.G.M.
Title Describing the Brain in Autism in Five Dimensions--Magnetic Resonance Imaging-Assisted Diagnosis of Autism Spectrum Disorder Using a Multiparameter Classification Approach Type Journal Article
Year 2010 Publication J. Neurosci. Abbreviated Journal J. Neurosci.
Volume 30 Issue 32 Pages (up) 10612-10623
Keywords
Abstract Autism spectrum disorder (ASD) is a neurodevelopmental condition with multiple causes, comorbid conditions, and a wide range in the type and severity of symptoms expressed by different individuals. This makes the neuroanatomy of autism inherently difficult to describe. Here, we demonstrate how a multiparameter classification approach can be used to characterize the complex and subtle structural pattern of gray matter anatomy implicated in adults with ASD, and to reveal spatially distributed patterns of discriminating regions for a variety of parameters describing brain anatomy. A set of five morphological parameters including volumetric and geometric features at each spatial location on the cortical surface was used to discriminate between people with ASD and controls using a support vector machine (SVM) analytic approach, and to find a spatially distributed pattern of regions with maximal classification weights. On the basis of these patterns, SVM was able to identify individuals with ASD at a sensitivity and specificity of up to 90% and 80%, respectively. However, the ability of individual cortical features to discriminate between groups was highly variable, and the discriminating patterns of regions varied across parameters. The classification was specific to ASD rather than neurodevelopmental conditions in general (e.g., attention deficit hyperactivity disorder). Our results confirm the hypothesis that the neuroanatomy of autism is truly multidimensional, and affects multiple and most likely independent cortical features. The spatial patterns detected using SVM may help further exploration of the specific genetic and neuropathological underpinnings of ASD, and provide new insights into the most likely multifactorial etiology of the condition.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes 10.1523/Jneurosci.5413-09.2010 Approved no
Call Number Equine Behaviour @ team @ Serial 5191
Permanent link to this record
 

 
Author Karenina, K.; Giljov, A.; Baranov, V.; Osipova, L.; Krasnova, V.; Malashichev, Y.
Title Visual Laterality of Calf–Mother Interactions in Wild Whales Type Journal Article
Year 2010 Publication PLoS ONE Abbreviated Journal PLoS ONE
Volume 5 Issue 11 Pages (up) e13787
Keywords
Abstract Background

Behavioral laterality is known for a variety of vertebrate and invertebrate animals. Laterality in social interactions has been described for a wide range of species including humans. Although evidence and theoretical predictions indicate that in social species the degree of population level laterality is greater than in solitary ones, the origin of these unilateral biases is not fully understood. It is especially poorly studied in the wild animals. Little is known about the role, which laterality in social interactions plays in natural populations. A number of brain characteristics make cetaceans most suitable for investigation of lateralization in social contacts.

Methodology/Principal Findings

Observations were made on wild beluga whales (Delphinapterus leucas) in the greatest breeding aggregation in the White Sea. Here we show that young calves (in 29 individually identified and in over a hundred of individually not recognized mother-calf pairs) swim and rest significantly longer on a mother's right side. Further observations along with the data from other cetaceans indicate that found laterality is a result of the calves' preference to observe their mothers with the left eye, i.e., to analyze the information on a socially significant object in the right brain hemisphere.

Conclusions/Significance

Data from our and previous work on cetacean laterality suggest that basic brain lateralizations are expressed in the same way in cetaceans and other vertebrates. While the information on social partners and novel objects is analyzed in the right brain hemisphere, the control of feeding behavior is performed by the left brain hemisphere. Continuous unilateral visual contacts of calves to mothers with the left eye may influence social development of the young by activation of the contralateral (right) brain hemisphere, indicating a possible mechanism on how behavioral lateralization may influence species life and welfare. This hypothesis is supported by evidence from other vertebrates.
Address
Corporate Author Thesis
Publisher Public Library of Science Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Equine Behaviour @ team @ Serial 5297
Permanent link to this record
 

 
Author Wascher, C.A.F.; Fraser, O.N.; Kotrschal, K.
Title Heart Rate during Conflicts Predicts Post-Conflict Stress-Related Behavior in Greylag Geese Type Journal Article
Year 2010 Publication PLoS ONE Abbreviated Journal PLoS ONE
Volume 5 Issue 12 Pages (up) e15751
Keywords
Abstract Background

Social stressors are known to be among the most potent stressors in group-living animals. This is not only manifested in individual physiology (heart rate, glucocorticoids), but also in how individuals behave directly after a conflict. Certain ‘stress-related behaviors’ such as autopreening, body shaking, scratching and vigilance have been suggested to indicate an individual's emotional state. Such behaviors may also alleviate stress, but the behavioral context and physiological basis of those behaviors is still poorly understood.

Methodology/Principal Findings

We recorded beat-to-beat heart rates (HR) of 22 greylag geese in response to agonistic encounters using fully implanted sensor-transmitter packages. Additionally, for 143 major events we analyzed the behavior shown by our focal animals in the first two minutes after an interaction. Our results show that the HR during encounters and characteristics of the interaction predicted the frequency and duration of behaviors shown after a conflict.

Conclusions/Significance

To our knowledge this is the first study to quantify the physiological and behavioral responses to single agonistic encounters and to link this to post conflict behavior. Our results demonstrate that ‘stress-related behaviors’ are flexibly modulated by the characteristics of the preceding aggressive interaction and reflect the individual's emotional strain, which is linked to autonomic arousal. We found no support for the stress-alleviating hypothesis, but we propose that stress-related behaviors may play a role in communication with other group members, particularly with pair-partners.
Address
Corporate Author Thesis
Publisher Public Library of Science Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Equine Behaviour @ team @ Serial 5298
Permanent link to this record
 

 
Author Weisbecker, V.; Goswami, A.
Title Brain size, life history, and metabolism at the marsupial/placental dichotomy Type Journal Article
Year 2010 Publication Proceedings of the National Academy of Sciences of the United States of America Abbreviated Journal Proc. Natl. Acad. Sci. U.S.A.
Volume 107 Issue 37 Pages (up) 16216-16221
Keywords
Abstract The evolution of mammalian brain size is directly linked with the evolution of the brain's unique structure and performance. Both maternal life history investment traits and basal metabolic rate (BMR) correlate with relative brain size, but current hypotheses regarding the details of these relationships are based largely on placental mammals. Using encephalization quotients, partial correlation analyses, and bivariate regressions relating brain size to maternal investment times and BMR, we provide a direct quantitative comparison of brain size evolution in marsupials and placentals, whose reproduction and metabolism differ extensively. Our results show that the misconception that marsupials are systematically smaller-brained than placentals is driven by the inclusion of one large-brained placental clade, Primates. Marsupial and placental brain size partial correlations differ in that marsupials lack a partial correlation of BMR with brain size. This contradicts hypotheses stating that the maintenance of relatively larger brains requires higher BMRs. We suggest that a positive BMR–brain size correlation is a placental trait related to the intimate physiological contact between mother and offspring during gestation. Marsupials instead achieve brain sizes comparable to placentals through extended lactation. Comparison with avian brain evolution suggests that placental brain size should be constrained due to placentals’ relative precociality, as has been hypothesized for precocial bird hatchlings. We propose that placentals circumvent this constraint because of their focus on gestation, as opposed to the marsupial emphasis on lactation. Marsupials represent a less constrained condition, demonstrating that hypotheses regarding placental brain size evolution cannot be generalized to all mammals.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Equine Behaviour @ team @ Serial 5338
Permanent link to this record
 

 
Author Frère, C.H.; Krützen, M.; Mann, J.; Connor, R.C.; Bejder, L.; Sherwin, W.B.
Title Social and genetic interactions drive fitness variation in a free-living dolphin population Type Journal Article
Year 2010 Publication Proc Natl Acad Sci USA Abbreviated Journal Proc. Natl. Acad. Sci. U.S.A.
Volume 107 Issue 46 Pages (up) 19949-19954
Keywords
Abstract The evolutionary forces that drive fitness variation in species are of considerable interest. Despite this, the relative importance and interactions of genetic and social factors involved in the evolution of fitness traits in wild mammalian populations are largely unknown. To date, a few studies have demonstrated that fitness might be influenced by either social factors or genes in natural populations, but none have explored how the combined effect of social and genetic parameters might interact to influence fitness. Drawing from a long-term study of wild bottlenose dolphins in the eastern gulf of Shark Bay, Western Australia, we present a unique approach to understanding these interactions. Our study shows that female calving success depends on both genetic inheritance and social bonds. Moreover, we demonstrate that interactions between social and genetic factors also influence female fitness. Therefore, our study represents a major methodological advance, and provides critical insights into the interplay of genetic and social parameters of fitness.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Equine Behaviour @ team @ Serial 6412
Permanent link to this record