toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Holmstrom, M.; Fredricson, I.; Drevemo, S. openurl 
  Title Biokinematic effects of collection on the trotting gaits in the elite dressage horse Type Journal Article
  Year 1995 Publication Equine Veterinary Journal Abbreviated Journal Equine Vet J  
  Volume 27 Issue 4 Pages 281-287  
  Keywords Animals; Biomechanics; Female; Gait/*physiology; Horses/*physiology; Kinesics; Male; Video Recording  
  Abstract Trot in hand, working trot, collected trot, passage and piaffe of 6 Grand Prix dressage horses were recorded by high speed film (250 frames/s). Angular patterns and hoof trajectories of the left fore- and hindlimbs were analysed and presented as mean and standard deviation (s.d.) curves. Speed and stride length decreased and fore- and hind stance phase durations increased with collection resulting in no suspension in piaffe. The diagonal advanced placement was positive in all gaits except for piaffe. Most of the changes in forelimb angular patterns were effects of reduction in forelimb pendulation. The horses did not step under themselves more in collected trot, passage and piaffe than in trot in hand. The stifle and hock joints were more flexed at the start of the stance phase in piaffe and passage than in the other gaits. Flexion of the hock joint at the middle of the stance phase was largest in passage and piaffe. In spite of the limited number of horses the present study confirmed earlier observations of conformation and gaits in dressage horses. Hindlimb pendulation, femur and pelvis inclinations and elbow, carpal, stifle and hock joint angles seem to be the most significant angular measurements for dressage performance.  
  Address (up) Swedish National Stud, Flyinge  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0425-1644 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:8536664 Approved no  
  Call Number Equine Behaviour @ team @ Serial 3742  
Permanent link to this record
 

 
Author Robert, C.; Audigie, F.; Valette, J.P.; Pourcelot, P.; Denoix, J.M. openurl 
  Title Effects of treadmill speed on the mechanics of the back in the trotting saddlehorse Type Journal Article
  Year 2001 Publication Equine Veterinary Journal. Supplement Abbreviated Journal Equine Vet J Suppl  
  Volume Issue 33 Pages 154-159  
  Keywords Animals; Biomechanics; Electromyography/veterinary; Exercise Test/veterinary; Horses/*physiology; Locomotion/*physiology; Muscle, Skeletal/*physiology; Range of Motion, Articular/*physiology; Spine/*physiology; Video Recording  
  Abstract Speed related changes in trunk mechanics have not yet been investigated, although high-speed training is currently used in the horse. To evaluate the effects of speed on back kinematics and trunk muscles activity, 4 saddle horses were recorded while trotting on a horizontal treadmill at speeds ranging from 3.5 to 6 m/s. The 3-dimensional (3-D) trajectories of skin markers on the left side of the horse and the dorsal midline of the trunk were established. Electrical activity was simultaneously obtained from the longissimus dorsi (LD) and rectus abdominis (RA) muscles using surface electrodes. Ten consecutive strides were analysed for each horse at each of the 5 velocity steps. Electromyographic and kinematic data were time-standardised to the duration of the stride cycle and compared using an analysis of variance. The back extended during the first part of each diagonal stance phase when the RA was active and the back flexed during the second part of each diagonal stance phase when the LD was active. The onset and end of muscle activity came earlier in the stride cycle and muscle activity intensity increased when speed increased. The amplitude of vertical movement of the trunk and the maximal angles of flexion decreased with increasing speed, whereas the extension angles remained unchanged. This resulted in a decreased range of back flexion-extension. This study confirms that the primary role of trunk muscles is to control the stiffness of the back rather than to induce movements. Understanding the effects of speed on the back of healthy horses is a prerequisite for the prevention and treatment of back pathology.  
  Address (up) UMR INRA, Biomecanique et Pathologie Locomotrice du Cheval, UP d'Anatomie, Ecole Nationale Veterinaire d'Alfort, 7 Avenue du General de Gaulle, F-94704 Maisons-Alfort, France  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes PMID:11721558 Approved no  
  Call Number Equine Behaviour @ team @ Serial 4050  
Permanent link to this record
 

 
Author Robert, C.; Valette, J.P.; Denoix, J.M. openurl 
  Title The effects of treadmill inclination and speed on the activity of three trunk muscles in the trotting horse Type Journal Article
  Year 2001 Publication Equine Veterinary Journal Abbreviated Journal Equine Vet J  
  Volume 33 Issue 5 Pages 466-472  
  Keywords Animals; Biomechanics; Electromyography/methods/veterinary; Exercise Test/veterinary; Gait/physiology; Horses/*physiology; Muscle, Skeletal/*physiology; Physical Conditioning, Animal; Rectus Abdominis/physiology; Time Factors  
  Abstract The purpose of this study was to evaluate the effects of speed and slope on the activity of trunk muscles. The electromyographic (EMG) activity of the splenius (Sp), longissimus dorsi (LD) and rectus abdominis (RA) muscles was recorded with surface electrodes during treadmill locomotion at trot for different combinations of speed (3.5 to 6 m/s) and slope (0 to 6%). Raw EMG signals were processed to determine activity duration, onset and end and integrated EMG (IEMG). For the 3 muscles investigated, onset and end of activity were obtained earlier in the stride cycle when speed increased. A longer duration of activity for the LD, a shorter duration for the RA and an unchanged duration for the Sp were also observed. The IEMG of the latter was poorly affected by speed, whereas it increased linearly with speed for the 2 other muscles. When treadmill inclination changed from 0 to 6%, EMG activity of the LD and RA began and ended later; a longer activity duration was noted. Temporal parameters for Sp did not change with slope. A significant and progressive increase in the IEMG of the 3 muscles was observed with increasing slope. This evaluation of the activity of trunk muscles provides objective data for the use of speed or slope in training programmes.  
  Address (up) UMR INRA-DGER, Biomecanique et Pathalogie Locomotrice du Cheval, UP Anatomie, Ecole Nationale Veterinaire d'Alfort, Maisons-Alfort, France  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0425-1644 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:11558741 Approved no  
  Call Number Equine Behaviour @ team @ Serial 4052  
Permanent link to this record
 

 
Author Rollot, Y.; Lecuyer, E.; Chateau, H.; Crevier-Denoix, N. openurl 
  Title Development of a 3D model of the equine distal forelimb and of a GRF shoe for noninvasive determination of in vivo tendon and ligament loads and strains Type Journal Article
  Year 2004 Publication Equine Veterinary Journal Abbreviated Journal Equine Vet J  
  Volume 36 Issue 8 Pages 677-682  
  Keywords Animals; Biomechanics; Floors and Floorcoverings; Forelimb/*physiology/ultrasonography; Gait/physiology; Horses/*physiology; Image Processing, Computer-Assisted; Imaging, Three-Dimensional/methods/*veterinary; Ligaments, Articular/*physiology; Locomotion/*physiology; Models, Biological; Shoes; Tendons/*physiology; Toe Joint/physiology/ultrasonography  
  Abstract REASONS FOR PERFORMING STUDY: As critical locomotion events (e.g. high-speed and impacts during racing, jump landing) may contribute to tendinopathies, in vivo recording of gaits kinematic and dynamic parameters is essential for 3D reconstruction and analysis. OBJECTIVE: To propose a 3D model of the forelimb and a ground reaction force recording shoe (GRF-S) for noninvasively quantifying tendon and ligament loads and strains. METHODS: Bony segments trajectories of forelimbs placed under a power press were recorded using triads of ultrasonic kinematic markers linked to the bones. Compression cycles (from 500-6000 N) were applied for different hoof orientations. Locations of tendon and ligament insertions were recorded with regard to the triads. The GRF-S recorded GRF over the hoof wall and used four 3-axis force sensors sandwiched between a support shoe and the shoe to be tested. RESULTS: Validation of the model by comparing calculated and measured superficial digital flexor tendon strains, and evaluation of the role of proximal interphalangeal joint in straight sesamoidean ligament and oblique sesamoidean ligament strains, were successfully achieved. Objective comparisons of the 3 components of GRF over the hoof for soft and hard grounds could be recorded, where the s.d. of GRF norm was more important on hard ground at walk and trot. CONCLUSIONS: Soft grounds (sand and rubber) dissipate energy by lowering GRF amplitude and diminish bounces and vibrations at impact. At comparable speed, stance phase was longer on soft sand ground. POTENTIAL RELEVANCE: The conjugate use of the GRF-S and the numerical model would help to quantify and analyse ground/shoe combination on comfort, propulsion efficiency or lameness recovery.  
  Address (up) UMR INRA-ENVA de Biomecanique et Pathologie Locomotrice du Cheval, Ecole Nationale Veterinaire d'Alfort, 7, Avenue du General de Gaulle, 94704 Maisons-Alfort, France  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0425-1644 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:15656495 Approved no  
  Call Number Equine Behaviour @ team @ Serial 3769  
Permanent link to this record
 

 
Author Cassiat, G.; Pourcelot, P.; Tavernier, L.; Geiger, D.; Denoix, J.M.; Degueurce, D. openurl 
  Title Influence of individual competition level on back kinematics of horses jumping a vertical fence Type Journal Article
  Year 2004 Publication Equine Veterinary Journal Abbreviated Journal Equine Vet J  
  Volume 36 Issue 8 Pages 748-753  
  Keywords Animals; Back/*physiology; Biomechanics; Female; Forelimb/*physiology; Gait/*physiology; Hindlimb/*physiology; Horses/*physiology; Image Processing, Computer-Assisted; Imaging, Three-Dimensional/veterinary; Locomotion/physiology; Male; Video Recording  
  Abstract REASONS FOR PERFORMING STUDY: The costs and investments required for the purchase and training of showjumpers justify the need to find selection means for jumping horses. Use of objective kinematic criteria correlated to jumping ability could be helpful for this assessment. OBJECTIVES: To compare back kinematics between 2 groups of horses of different competition levels (Group 1, competing at high level; Group 2 competing at low level) while free jumping over a 1 m vertical fence. METHODS: Three-dimensional recordings were performed using 2 panning cameras. Kinematic parameters of the withers and tuber sacrale (vertical displacement, vertical and horizontal velocities), backline inclination and flexion-extension motion of the 3 main dorsal segments (thoracic, thoracolumbar and lumbosacral) were analysed. RESULTS: Group 2 horses had a lower displacement of their withers and tuber sacrale from the end of the last approach stride until the first departure stride (P<0.05). As a result, they increased the flexion of their thoracolumbar and lumbosacral junctions during the hindlimb swing phase before take-off (P<0.05). However, withers and tuber sacrale velocities were slightly modified. Group 1 horses pitched their backline less forward during the forelimb stance phase before take-off and straightened it more after landing (P<0.05), probably indicating a more efficient strutting action of their forelimbs. CONCLUSIONS AND POTENTIAL RELEVANCE: Because significant differences in back motion were found between good and poor jumpers when jumping a 1 m high fence, criteria based on certain back kinematics can be developed that may help in the selection of talented showjumpers.  
  Address (up) UMR INRA-ENVA de Biomecanique et Pathologie Locomotrice du Cheval, Ecole Nationale Veterinaire d'Alfort, Avenue du General de Gaulle, 94704 Maisons Alfort, France  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0425-1644 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:15656509 Approved no  
  Call Number Equine Behaviour @ team @ Serial 4042  
Permanent link to this record
 

 
Author Skedros, J.G.; Dayton, M.R.; Sybrowsky, C.L.; Bloebaum, R.D.; Bachus, K.N. doi  openurl
  Title The influence of collagen fiber orientation and other histocompositional characteristics on the mechanical properties of equine cortical bone Type Journal Article
  Year 2006 Publication The Journal of Experimental Biology Abbreviated Journal J Exp Biol  
  Volume 209 Issue Pt 15 Pages 3025-3042  
  Keywords Animals; Biomechanics; Bone and Bones/*physiology; Collagen/*physiology; Forelimb; Horses/*physiology  
  Abstract This study examined relative influences of predominant collagen fiber orientation (CFO), mineralization (% ash), and other microstructural characteristics on the mechanical properties of equine cortical bone. Using strain-mode-specific (S-M-S) testing (compression testing of bone habitually loaded in compression; tension testing of bone habitually loaded in tension), the relative mechanical importance of CFO and other material characteristics were examined in equine third metacarpals (MC3s). This model was chosen since it had a consistent non-uniform strain distribution estimated by finite element analysis (FEA) near mid-diaphysis of a thoroughbred horse, net tension in the dorsal/lateral cortices and net compression in the palmar/medial cortices. Bone specimens from regions habitually loaded in tension or compression were: (1) tested to failure in both axial compression and tension in order to contrast S-M-S vs non-S-M-S behavior, and (2) analyzed for CFO, % ash, porosity, fractional area of secondary osteonal bone, osteon cross-sectional area, and population densities of secondary osteons and osteocyte lacunae. Multivariate multiple regression analyses revealed that in S-M-S compression testing, CFO most strongly influenced total energy (pre-yield elastic energy plus post-yield plastic energy); in S-M-S tension testing CFO most strongly influenced post-yield energy and total energy. CFO was less important in explaining S-M-S elastic modulus, and yield and ultimate stress. Therefore, in S-M-S loading CFO appears to be important in influencing energy absorption, whereas the other characteristics have a more dominant influence in elastic modulus, pre-yield behavior and strength. These data generally support the hypothesis that differentially affecting S-M-S energy absorption may be an important consequence of regional histocompositional heterogeneity in the equine MC3. Data inconsistent with the hypothesis, including the lack of highly longitudinal collagen in the dorsal-lateral ;tension' region, paradoxical histologic organization in some locations, and lack of significantly improved S-M-S properties in some locations, might reflect the absence of a similar habitual strain distribution in all bones. An alternative strain distribution based on in vivo strain measurements, without FEA, on non-Thoroughbreds showing net compression along the dorsal-palmar axis might be more characteristic of the habitual loading of some of the bones that we examined. In turn, some inconsistencies might also reflect the complex torsion/bending loading regime that the MC3 sustains when the animal undergoes a variety of gaits and activities, which may be representative of only a portion of our animals, again reflecting the possibility that not all of the bones examined had similar habitual loading histories.  
  Address (up) Utah Bone and Joint Center, 5323 S. Woodrow Street #202, Salt Lake City, UT 84107, USA. jskedros@utahboneandjoint.com  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-0949 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:16857886 Approved no  
  Call Number Serial 1868  
Permanent link to this record
 

 
Author Clayton, H.M. openurl 
  Title Comparison of the stride kinematics of the collected, working, medium and extended trot in horses Type Journal Article
  Year 1994 Publication Equine Veterinary Journal Abbreviated Journal Equine Vet J  
  Volume 26 Issue 3 Pages 230-234  
  Keywords Analysis of Variance; Animals; Biomechanics; Female; Forelimb/anatomy & histology/physiology; Gait/*physiology; Hindlimb/anatomy & histology/physiology; Horses/anatomy & histology/*physiology; Locomotion/physiology; Male; Motion Pictures  
  Abstract Highly-trained dressage horses were studied to test the hypothesis that stride length is altered independently of stride duration in the transitions between the collected, working, medium and extended trot. Six well-trained dressage horses were filmed at a frame rate of 150 frames/s performing the collected, working, medium and extended trots in a sand arena. Temporal, linear and angular data were extracted from the films, with 4 strides being analysed for each horse and gait type. There were no significant asymmetries between the left and rights limbs or diagonals when data from the whole group were pooled, but 3 horses showed asymmetries in one or more variables (P < 0.01). Analysis of variance and post-hoc tests indicated that the speed increased significantly (P < 0.01) from the collected (3.20 m/s) to the working (3.61 m/s) to the medium (4.47 m/s) to the extended (4.93 m/s) trot. The increases in speed were associated with a significant increase in stride length from 250 cm in the collected trot, to 273 cm in the working trot, 326 cm in the medium trot and 355 cm in the extended trot (P < 0.01). The lengthening of the stride was a result of increases between each gait type in the over-reach distance, whereas the diagonal distance was significantly longer in the extended than the collected trot only (P < 0.01). The stride duration tended to decrease as speed increased, and the difference became significant between the collected and extended trots (P < 0.01).  
  Address (up) Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Canada  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0425-1644 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:8542844 Approved no  
  Call Number Equine Behaviour @ team @ Serial 3746  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print