toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Yokoyama, S.; Radlwimmer, F.B. url  openurl
  Title The molecular genetics of red and green color vision in mammals Type Journal Article
  Year 1999 Publication Genetics Abbreviated Journal Genetics  
  Volume 153 Issue 2 Pages 919-932  
  Keywords Amino Acid Sequence; Animals; Base Sequence; COS Cells; Cats; Color Perception/*genetics; DNA Primers; Deer; Dolphins; *Evolution, Molecular; Goats; Guinea Pigs; Horses; Humans; Mammals/*genetics/physiology; Mice; Molecular Sequence Data; Opsin/biosynthesis/chemistry/*genetics; *Phylogeny; Rabbits; Rats; Recombinant Proteins/biosynthesis; Reverse Transcriptase Polymerase Chain Reaction; Sciuridae; Sequence Alignment; Sequence Homology, Amino Acid; Transfection  
  Abstract (up) To elucidate the molecular mechanisms of red-green color vision in mammals, we have cloned and sequenced the red and green opsin cDNAs of cat (Felis catus), horse (Equus caballus), gray squirrel (Sciurus carolinensis), white-tailed deer (Odocoileus virginianus), and guinea pig (Cavia porcellus). These opsins were expressed in COS1 cells and reconstituted with 11-cis-retinal. The purified visual pigments of the cat, horse, squirrel, deer, and guinea pig have lambdamax values at 553, 545, 532, 531, and 516 nm, respectively, which are precise to within +/-1 nm. We also regenerated the “true” red pigment of goldfish (Carassius auratus), which has a lambdamax value at 559 +/- 4 nm. Multiple linear regression analyses show that S180A, H197Y, Y277F, T285A, and A308S shift the lambdamax values of the red and green pigments in mammals toward blue by 7, 28, 7, 15, and 16 nm, respectively, and the reverse amino acid changes toward red by the same extents. The additive effects of these amino acid changes fully explain the red-green color vision in a wide range of mammalian species, goldfish, American chameleon (Anolis carolinensis), and pigeon (Columba livia).  
  Address Department of Biology, Syracuse University, Syracuse, New York 13244, USA. syokoyam@mailbox.syr.edu  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0016-6731 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:10511567 Approved no  
  Call Number Equine Behaviour @ team @ Serial 4063  
Permanent link to this record
 

 
Author Connor, R.C.; Mann, J.; Tyack, P.L.; Whitehead, H. url  doi
openurl 
  Title Social evolution in toothed whales Type Journal Article
  Year 1998 Publication Trends in Ecology & Evolution Abbreviated Journal Trends. Ecol. Evol  
  Volume 13 Issue 6 Pages 228-232  
  Keywords odontocetes; toothed whales; social evolution; communication; bottlenose dolphins; sperm whales; long-term studies; foraging  
  Abstract (up) Two contrasting results emerge from comparisons of the social systems of several odontocetes with terrestrial mammals. Researchers have identified remarkable convergence in prominent features of the social systems of odontocetes such as the sperm whale and bottlenose dolphin with a few well-known terrestrial mammals such as the elephant and chimpanzee. In contrast, studies on killer whales and Baird's beaked whale reveal novel social solutions to aquatic living. The combination of convergent and novel features in odontocete social systems promise a more general understanding of the ecological determinants of social systems in both terrestrial and aquatic habitats, as well as the relationship between relative brain size and social evolution.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0169-5347 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Equine Behaviour @ team @ Serial 4789  
Permanent link to this record
 

 
Author Potts, R. doi  openurl
  Title Variability selection in hominid evolution Type Journal Article
  Year 1998 Publication Evolutionary Anthropology: Issues, News, and Reviews Abbreviated Journal Evol. Anthropol.  
  Volume 7 Issue 3 Pages 81-96  
  Keywords variability selection; hominids; environment; adaptation; natural selection; evolution  
  Abstract (up) Variability selection (abbreviated as VS) is a process considered to link adaptive change to large degrees of environment variability. Its application to hominid evolution is based, in part, on the pronounced rise in environmental remodeling that took place over the past several million years. The VS hypothesis differs from prior views of hominid evolution, which stress the consistent selective effects associated with specific habitats or directional trends (e.g., woodland, savanna expansion, cooling). According to the VS hypothesis, wide fluctuations over time created a growing disparity in adaptive conditions. Inconsistency in selection eventually caused habitat-specific adaptations to be replaced by structures and behaviors responsive to complex environmental change. Key hominid adaptations, in fact, emerged during times of heightened variability. Early bipedality, encephalized brains, and complex human sociality appear to signify a sequence of VS adaptations—i.e., a ratcheting up of versatility and responsiveness to novel environments experienced over the past 6 million years. The adaptive results of VS cannot be extrapolated from selection within a single environmental shift or relatively stable habitat. If some complex traits indeed require disparities in adaptive setting (and relative fitness) in order to evolve, the VS idea counters the prevailing view that adaptive change necessitates long-term, directional consistency in selection. © 1998 Wiley-Liss, Inc.  
  Address  
  Corporate Author Thesis  
  Publisher John Wiley & Sons, Inc. Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1520-6505 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Equine Behaviour @ team @ Serial 5461  
Permanent link to this record
 

 
Author Cochet, H.; Byrne, R.W. url  doi
openurl 
  Title Evolutionary origins of human handedness: evaluating contrasting hypotheses Type Journal Article
  Year 2013 Publication Abbreviated Journal Animal Cognition  
  Volume 16 Issue 4 Pages 531-542  
  Keywords Hand preference; Hemispheric specialization; Communicative gestures; Evolution of language; Nonhuman primates; Human children  
  Abstract (up) Variation in methods and measures, resulting in past dispute over the existence of population handedness in nonhuman great apes, has impeded progress into the origins of human right-handedness and how it relates to the human hallmark of language. Pooling evidence from behavioral studies, neuroimaging and neuroanatomy, we evaluate data on manual and cerebral laterality in humans and other apes engaged in a range of manipulative tasks and in gestural communication. A simplistic human/animal partition is no longer tenable, and we review four (nonexclusive) possible drivers for the origin of population-level right-handedness: skilled manipulative activity, as in tool use; communicative gestures; organizational complexity of action, in particular hierarchical structure; and the role of intentionality in goal-directed action. Fully testing these hypotheses will require developmental and evolutionary evidence as well as modern neuroimaging data.  
  Address  
  Corporate Author Thesis  
  Publisher Springer-Verlag Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1435-9448 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Equine Behaviour @ team @ Serial 5691  
Permanent link to this record
 

 
Author Bshary, R.; Wickler, W.; Fricke, H. doi  openurl
  Title Fish cognition: a primate's eye view Type Journal Article
  Year 2002 Publication Animal Cognition Abbreviated Journal Anim. Cogn.  
  Volume 5 Issue 1 Pages 1-13  
  Keywords Animals; Cognition/*physiology; Evolution; Fishes/*physiology; Intelligence; Learning; Primates/*physiology; Social Behavior  
  Abstract (up) We provide selected examples from the fish literature of phenomena found in fish that are currently being examined in discussions of cognitive abilities and evolution of neocortex size in primates. In the context of social intelligence, we looked at living in individualized groups and corresponding social strategies, social learning and tradition, and co-operative hunting. Regarding environmental intelligence, we searched for examples concerning special foraging skills, tool use, cognitive maps, memory, anti-predator behaviour, and the manipulation of the environment. Most phenomena of interest for primatologists are found in fish as well. We therefore conclude that more detailed studies on decision rules and mechanisms are necessary to test for differences between the cognitive abilities of primates and other taxa. Cognitive research can benefit from future fish studies in three ways: first, as fish are highly variable in their ecology, they can be used to determine the specific ecological factors that select for the evolution of specific cognitive abilities. Second, for the same reason they can be used to investigate the link between cognitive abilities and the enlargement of specific brain areas. Third, decision rules used by fish could be used as 'null-hypotheses' for primatologists looking at how monkeys might make their decisions. Finally, we propose a variety of fish species that we think are most promising as study objects.  
  Address University of Cambridge, Department of Zoology, Downing Street, Cambridge CB2 3EJ, UK. rb286@cam.ac.uk  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1435-9448 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:11957395 Approved no  
  Call Number Equine Behaviour @ team @ Serial 2617  
Permanent link to this record
 

 
Author Shoshani, J.; Kupsky, W.J.; Marchant, G.H. doi  openurl
  Title Elephant brain. Part I: gross morphology, functions, comparative anatomy, and evolution Type Journal Article
  Year 2006 Publication Brain Research Bulletin Abbreviated Journal Brain Res Bull  
  Volume 70 Issue 2 Pages 124-157  
  Keywords Animals; Brain/*anatomy & histology/blood supply/*physiology; Cats; Chinchilla; Elephants/*anatomy & histology/*physiology; Equidae; *Evolution; Female; Guinea Pigs; Haplorhini; Humans; Hyraxes; Male; Pan troglodytes; Sheep; Wolves  
  Abstract (up) We report morphological data on brains of four African, Loxodonta africana, and three Asian elephants, Elephas maximus, and compare findings to literature. Brains exhibit a gyral pattern more complex and with more numerous gyri than in primates, humans included, and in carnivores, but less complex than in cetaceans. Cerebral frontal, parietal, temporal, limbic, and insular lobes are well developed, whereas the occipital lobe is relatively small. The insula is not as opercularized as in man. The temporal lobe is disproportionately large and expands laterally. Humans and elephants have three parallel temporal gyri: superior, middle, and inferior. Hippocampal sizes in elephants and humans are comparable, but proportionally smaller in elephant. A possible carotid rete was observed at the base of the brain. Brain size appears to be related to body size, ecology, sociality, and longevity. Elephant adult brain averages 4783 g, the largest among living and extinct terrestrial mammals; elephant neonate brain averages 50% of its adult brain weight (25% in humans). Cerebellar weight averages 18.6% of brain (1.8 times larger than in humans). During evolution, encephalization quotient has increased by 10-fold (0.2 for extinct Moeritherium, approximately 2.0 for extant elephants). We present 20 figures of the elephant brain, 16 of which contain new material. Similarities between human and elephant brains could be due to convergent evolution; both display mosaic characters and are highly derived mammals. Humans and elephants use and make tools and show a range of complex learning skills and behaviors. In elephants, the large amount of cerebral cortex, especially in the temporal lobe, and the well-developed olfactory system, structures associated with complex learning and behavioral functions in humans, may provide the substrate for such complex skills and behavior.  
  Address Department of Biology, University of Asmara, P.O. Box 1220, Asmara, Eritrea (Horn of Africa). hezy@bio.uoa.edu.er  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0361-9230 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:16782503 Approved no  
  Call Number Equine Behaviour @ team @ Serial 2623  
Permanent link to this record
 

 
Author Cilnis, M.J.; Kang, W.; Weaver, S.C. doi  openurl
  Title Genetic conservation of Highlands J viruses Type Journal Article
  Year 1996 Publication Virology Abbreviated Journal Virology  
  Volume 218 Issue 2 Pages 343-351  
  Keywords Alphavirus/*genetics; Alphavirus Infections/transmission/veterinary/virology; Amino Acid Sequence; Animals; Base Sequence; Conserved Sequence; Disease Outbreaks; Encephalitis, Viral/veterinary/virology; *Evolution, Molecular; Horses; Molecular Sequence Data; Phylogeny; RNA, Viral/genetics; Sequence Alignment; Sequence Analysis, DNA; Sequence Homology, Nucleic Acid; Turkeys; Variation (Genetics)/*genetics  
  Abstract (up) We studied molecular evolution of the mosquito-borne alphavirus Highlands J (HJ) virus by sequencing PCR products generated from 19 strains isolated between 1952 and 1994. Sequences of 1200 nucleotides including portions of the E1 gene and the 3' untranslated region revealed a relatively slow evolutionary rate estimated at 0.9-1.6 x 10(-4) substitutions per nucleotide per year. Phylogenetic trees indicated that all HJ viruses descended from a common ancestor and suggested the presence of one dominant lineage in North America. However, two or more minor lineages probably circulated simultaneously for periods of years to a few decades. Strains isolated from a horse suffering encephalitis, and implicated in a recent turkey outbreak, were not phylogenetically distinct from strains isolated in other locations during the same time periods. Our findings are remarkably similar to those we obtained previously for another North American alphavirus, eastern equine encephalomyelitis virus, with which Highlands J shares primary mosquito and avian hosts, geographical distribution, and ecology. These results support the hypotheses that the duration of the transmission season affects arboviral evolutionary rates and vertebrate host mobility influences genetic diversity.  
  Address Department of Biology, University of California, San Diego, La Jolla 92093-0116, USA  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0042-6822 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:8610461 Approved no  
  Call Number Equine Behaviour @ team @ Serial 2657  
Permanent link to this record
 

 
Author Marino, L. doi  openurl
  Title Convergence of complex cognitive abilities in cetaceans and primates Type Journal Article
  Year 2002 Publication Brain, Behavior and Evolution Abbreviated Journal Brain Behav Evol  
  Volume 59 Issue 1-2 Pages 21-32  
  Keywords Animal Communication; Animals; Brain/physiology; Cerebral Cortex/physiology; Cetacea/*physiology; Cognition/*physiology; *Evolution; Humans; Intelligence; Primates/*physiology  
  Abstract (up) What examples of convergence in higher-level complex cognitive characteristics exist in the animal kingdom? In this paper I will provide evidence that convergent intelligence has occurred in two distantly related mammalian taxa. One of these is the order Cetacea (dolphins, whales and porpoises) and the other is our own order Primates, and in particular the suborder anthropoid primates (monkeys, apes, and humans). Despite a deep evolutionary divergence, adaptation to physically dissimilar environments, and very different neuroanatomical organization, some primates and cetaceans show striking convergence in social behavior, artificial 'language' comprehension, and self-recognition ability. Taken together, these findings have important implications for understanding the generality and specificity of those processes that underlie cognition in different species and the nature of the evolution of intelligence.  
  Address Neuroscience and Behavioral Biology Program, Emory University, Atlanta, Ga. 30322, USA. lmarino@emory.edu  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0006-8977 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:12097858 Approved no  
  Call Number Equine Behaviour @ team @ Serial 4158  
Permanent link to this record
 

 
Author Watanabe, S.; Huber, L. doi  openurl
  Title Animal logics: decisions in the absence of human language Type Journal Article
  Year 2006 Publication Animal Cognition Abbreviated Journal Anim. Cogn.  
  Volume 9 Issue 4 Pages 235-245  
  Keywords *Animal Communication; Animals; Behavior, Animal/*physiology; Brain/physiology; Cognition/*physiology; Decision Making/*physiology; Evolution; Humans; *Language; *Logic; Problem Solving/physiology  
  Abstract (up) Without Abstract  
  Address Department of Psychology, Keio University, Mita 2-15-45, Minato-ku, Tokyo 108, Japan. swat@flet.keio.ac.jp  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1435-9448 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:16909231 Approved no  
  Call Number Equine Behaviour @ team @ Serial 2453  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print