toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Christensen, J.W.; Zharkikh, T.; Ladewig, J.; Yasinetskaya, N. url  doi
openurl 
  Title Social behaviour in stallion groups (Equus przewalskii and Equus caballus) kept under natural and domestic conditions Type Journal Article
  Year 2002 Publication Applied Animal Behaviour Science Abbreviated Journal Appl. Anim. Behav. Sci.  
  Volume 76 Issue 1 Pages 11-20  
  Keywords Domestic horse; Przewalski horse; Stallion group; Social behaviour; Equus caballus; Equus przewalskii  
  Abstract (up) The aim of this study was to investigate social behaviour in differently reared stallions in their respective environments; one group of stallions was reared under typical domestic conditions whereas the other group was reared and lives under natural conditions. The domestic group consisted of 19, 2-year-old stallions (Equus caballus), which were all weaned at 4 months of age and experienced either individual or group housing facilities before being pastured with the other similarly aged stallions. The natural living and mixed age group of Przewalski stallions (E. przewalskii) consisted of 13 stallions, most of which were juveniles (n=11, <=4 years; n=2, >9 years). The domestic group was studied in a 4-ha enclosure at the Danish Institute of Agricultural Sciences and the Przewalski group under free-ranging conditions in a 75-ha enclosure in the Askania Nova Biosphere Reserve, Ukraine. Behavioural data was collected during 168 h of direct observation. The occurrence of 14 types of social interactions was recorded and group spacing behaviour was studied using nearest neighbour recordings. In spite of very different environments, reflecting domestic and natural rearing conditions, many similarities in behaviour was found. Play and play fight behaviour was very similar in the two stallion groups. Quantitative differences were found in social grooming since Przewalski stallions groomed more frequently (P=0.004), and in investigative behaviours, since domestic stallions showed more nasal (P=0.005) and body sniffing (P<0.001), whereas Przewalski stallions directed more sniffing towards the genital region (P<0.001). These differences may, however, be attributed to environmental factors and in the period of time the stallions were together prior to the study period. Quantitative differences appeared in some agonistic behaviours (kick threat, P<0.001; and kick, P<0.001), but data do not support earlier findings of Przewalski horses being significantly more aggressive than domestic horses. In general, Przewalski stallions engaged in more social interactions, and they showed less group spacing, i.e. maintained a significantly shorter distance between neighbours (P<0.001). The study indicates that also domestic horses, which have been reared under typical domestic conditions and allowed a period on pasture, show social behaviour, which is very similar to that shown by their non-domestic relatives.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number refbase @ user @ Serial 776  
Permanent link to this record
 

 
Author Zharkikh, T.L.; Andersen, L. url  doi
openurl 
  Title Behaviour of Bachelor Males of the Przewalski Horse (Equus ferus przewalskii) at the Reserve Askania Nova Type Journal Article
  Year 2009 Publication Der Zoologische Garten Abbreviated Journal Zoologische Garten  
  Volume 78 Issue 5-6 Pages 282-299  
  Keywords Equid; Przewalski horse (Equus ferus przewalskii); Bachelor group; Social behaviour  
  Abstract (up) The aim of this study was to investigate social relationships between Przewalski horses at a high density in a bachelor group housed in a 3.5-ha enclosure. The group consisted of 16 males aged 5 to 16. Behavioural data were collected during 18 days, total 216 h. Fifteen minute focal animal sampling was used; each horse was observed three times a day for a total of 45 min. The occurrence of 25 behaviours was recorded, and group spacing behaviour was studied using nearest neighbour recordings. The group divided into four subgroups; this supports earlier findings of bachelor groups (n>=10) dividing into two or more subgroups if they included several males aged >5 years. The total frequency of social interactions was 14.6±1.1 h-1. Although the density of the group in this study was higher than in other zoos, the males interacted agonistically only 3.6 h-1. The most frequently observed social behaviour categories were friendly interactions. This study shows possibilities to use some investigative behaviours (marking, flehmen, olfactory investigation, etc.) as indicators of social status of animals in a group.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0044-5169 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Equine Behaviour @ team @ Serial 5098  
Permanent link to this record
 

 
Author Hoang, L.; Maity, H.; Krishna, M.M.G.; Lin, Y.; Englander, S.W. openurl 
  Title Folding units govern the cytochrome c alkaline transition Type Journal Article
  Year 2003 Publication Journal of Molecular Biology Abbreviated Journal J Mol Biol  
  Volume 331 Issue 1 Pages 37-43  
  Keywords Animals; Cytochrome c Group/*chemistry; Horses; Hydrogen/chemistry; Hydrogen-Ion Concentration; Kinetics; Models, Molecular; *Protein Folding; Protein Structure, Tertiary; Spectrum Analysis; Titrimetry  
  Abstract (up) The alkaline transition of cytochrome c is a model for protein structural switching in which the normal heme ligand is replaced by another group. Stopped flow data following a jump to high pH detect two slow kinetic phases, suggesting two rate-limiting structure changes. Results described here indicate that these events are controlled by the same structural unfolding reactions that account for the first two steps in the reversible unfolding pathway of cytochrome c. These and other results show that the cooperative folding-unfolding behavior of protein foldons can account for a variety of functional activities in addition to determining folding pathways.  
  Address Department of Biochemistry and Biophysics, University of Pennsylvania School of Medicine, Philadelphia, PA 19104-6059, USA. lhoang@mail.upenn.edu  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-2836 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:12875834 Approved no  
  Call Number Equine Behaviour @ team @ Serial 3781  
Permanent link to this record
 

 
Author Levin, L.E. url  doi
openurl 
  Title Passage order through different pathways in groups of schooling fish, and the diversified leadership hypothesis Type Journal Article
  Year 1996 Publication Behavioural Processes Abbreviated Journal Behav. Process.  
  Volume 37 Issue 1 Pages 1-8  
  Keywords Animal sociality; Inter-individual variability; Aggregation-dispersion; Group problem solving  
  Abstract (up) The diversified leadership hypothesis proposes that different individuals within a school of fish act as leaders in different circumstances. This `circumstantial leadership' results from inter-individual behavioral variability and a `cohesion-dispersion' tendency modulated by `failure-success' contingencies. The hypothesis predicts that when offered different pathways to escape the restriction of their swimming space, individuals within a group of fish will show 1. (a) consistent passage orders in each pathway, but2. (b) different passage orders in different pathways. Using an avoidance paddle and three different groups of fish (Aphyocharax erithrurus) the results confirmed prediction 1. (a) while prediction2. (b) was verified only in one group.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Equine Behaviour @ team @ room B 3.029 Serial 2069  
Permanent link to this record
 

 
Author Pierce, M.M.; Nall, B.T. doi  openurl
  Title Coupled kinetic traps in cytochrome c folding: His-heme misligation and proline isomerization Type Journal Article
  Year 2000 Publication Journal of Molecular Biology Abbreviated Journal J Mol Biol  
  Volume 298 Issue 5 Pages 955-969  
  Keywords Amino Acid Sequence; Amino Acid Substitution/genetics; Binding Sites; Cytochrome c Group/*chemistry/genetics/*metabolism; *Cytochromes c; Enzyme Stability/drug effects; Fluorescence; Guanidine/pharmacology; Heme/*metabolism; Histidine/genetics/*metabolism; Hydrogen-Ion Concentration; Isomerism; Kinetics; Models, Molecular; Molecular Sequence Data; Mutation/genetics; Proline/*chemistry/metabolism; Protein Conformation/drug effects; Protein Denaturation/drug effects; *Protein Folding; Protein Renaturation; Saccharomyces cerevisiae/enzymology/genetics; Sequence Alignment; Thermodynamics  
  Abstract (up) The effect of His-heme misligation on folding has been investigated for a triple mutant of yeast iso-2 cytochrome c (N26H,H33N,H39K iso-2). The variant contains a single misligating His residue at position 26, a location at which His residues are found in several cytochrome c homologues, including horse, tuna, and yeast iso-1. The amplitude for fast phase folding exhibits a strong initial pH dependence. For GdnHCl unfolded protein at an initial pH<5, the observed refolding at final pH 6 is dominated by a fast phase (tau(2f)=20 ms, alpha(2f)=90 %) that represents folding in the absence of misligation. For unfolded protein at initial pH 6, folding at final pH 6 occurs in a fast phase of reduced amplitude (alpha(2f) approximately 20 %) but the same rate (tau(2f)=20 ms), and in two slower phases (tau(m)=6-8 seconds, alpha(m) approximately 45 %; and tau(1b)=16-20 seconds, alpha(1b) approximately 35 %). Double jump experiments show that the initial pH dependence of the folding amplitudes results from a slow pH-dependent equilibrium between fast and slow folding species present in the unfolded protein. The slow equilibrium arises from coupling of the His protonation equilibrium to His-heme misligation and proline isomerization. Specifically, Pro25 is predominantly in trans in the unligated low-pH unfolded protein, but is constrained in a non-native cis isomerization state by His26-heme misligation near neutral pH. Refolding from the misligated unfolded form proceeds slowly due to the large energetic barrier required for proline isomerization and displacement of the misligated His26-heme ligand.  
  Address Center for Biomolecular Structure, Department of Biochemistry, University of Texas Health Science Center, 7703 Floyd Curl Drive, San Antonio, TX 78229-3900, USA  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-2836 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:10801361 Approved no  
  Call Number refbase @ user @ Serial 3853  
Permanent link to this record
 

 
Author Wilson, M.T.; Silvestrini, M.C.; Morpurgo, L.; Brunori, M. openurl 
  Title Electron transfer kinetics between Rhus vernicifera stellacyanin and cytochrome c (horse heart cytochrome c and Pseudomonas cytochrome c551) Type Journal Article
  Year 1979 Publication Journal of Inorganic Biochemistry Abbreviated Journal J Inorg Biochem  
  Volume 11 Issue 2 Pages 95-100  
  Keywords Animals; Copper; Cytochrome c Group/*metabolism; Electron Transport; Kinetics; Metalloproteins/*metabolism; Plant Proteins/*metabolism; *Plants, Toxic; Pseudomonas aeruginosa/*metabolism; Toxicodendron/*metabolism  
  Abstract (up) The electron transfer reactions between Rhus vernicifera stellacyanin and either horse heart cytochrome c or Pseudomonas aeruginosa cytochrome c551 were investigated by rapid reaction techniques. The time course of electron transfer is monophasic under all conditions, and thus consistent with a simple formulation of the reaction. Both stopped-flow and temperature-jump experiments yield equilibrium constants in reasonable agreement with values calculated from the redox potentials. The differences in reaction rate between the two cytochromes and stellacyanin are discussed in terms of the Marcus theory.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0162-0134 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:228006 Approved no  
  Call Number refbase @ user @ Serial 3879  
Permanent link to this record
 

 
Author Ridge, J.A.; Baldwin, R.L.; Labhardt, A.M. openurl 
  Title Nature of the fast and slow refolding reactions of iron(III) cytochrome c Type Journal Article
  Year 1981 Publication Biochemistry Abbreviated Journal Biochemistry  
  Volume 20 Issue 6 Pages 1622-1630  
  Keywords Animals; Ascorbic Acid; *Cytochrome c Group; Guanidines; Horses; Kinetics; Oxidation-Reduction; Protein Conformation; Spectrum Analysis  
  Abstract (up) The fast and slow refolding reactions of iron(III) cytochrome c (Fe(III) cyt c), previously studied by Ikai et al. (Ikai, A., Fish, W. W., & Tanford, C. (1973) J. Mol. Biol. 73, 165--184), have been reinvestigated. The fast reaction has the major amplitude (78%) and is 100-fold faster than the slow reaction in these conditions (pH 7.2, 25 degrees C, 1.75 M guanidine hydrochloride). We show here that native cyt c is the product formed in the fast reaction as well as in the slow reaction. Two probes have been used to test for formation of native cyt c. absorbance in the 695-nm band and rate of reduction of by L-ascorbate. Different unfolded species (UF, US) give rise to the fast and slow refolding reactions, as shown both by refolding assays at different times after unfolding (“double-jump” experiments) and by the formation of native cyt c in each of the fast and slow refolding reactions. Thus the fast refolding reaction is UF leads to N and the slow refolding reaction is Us leads to N, where N is native cyt c, and there is a US in equilibrium UF equilibrium in unfolded cyt c. The results are consistent with the UF in equilibrium US reaction being proline isomerization, but this has not yet been tested in detail. Folding intermediates have been detected in both reactions. In the UF leads to N reaction, the Soret absorbance change precedes the recovery of the native 695-nm band spectrum, showing that Soret absorbance monitors the formation of a folding intermediate. In the US leads to N reaction an ascorbate-reducible intermediate has been found at an early stage in folding and the Soret absorbance change occurs together with the change at 695 nm as N is formed in the final stage of folding.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0006-2960 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:6261802 Approved no  
  Call Number Equine Behaviour @ team @ Serial 3809  
Permanent link to this record
 

 
Author Wilson, M.T.; Ranson, R.J.; Masiakowski, P.; Czarnecka, E.; Brunori, M. openurl 
  Title A kinetic study of the pH-dependent properties of the ferric undecapeptide of cytochrome c (microperoxidase) Type Journal Article
  Year 1977 Publication European Journal of Biochemistry / FEBS Abbreviated Journal Eur J Biochem  
  Volume 77 Issue 1 Pages 193-199  
  Keywords Animals; Cyanides; *Cytochrome c Group/metabolism; Ferric Compounds; Horses; Hydrogen-Ion Concentration; Imidazoles; Kinetics; Mathematics; Myocardium/enzymology; *Oligopeptides/metabolism; *Peptide Fragments/metabolism; Protein Binding; Spectrophotometry; Temperature  
  Abstract (up) The ferric form of the haem undecapeptide, derived from horse cytochrome c by peptic digestion, undergoes at least three pH-induced transitions with pK values of 3.4, 5.8 and 7.6. Temperature-jump experiments suggest that the first of these is due to the binding of a deprotonated imidazole group to the feric iron while the second and third arise from the binding of the two available amino groups present (the alpha-NH2 of valine and the epsilon-NH2 of lysine). Molecular models indicate that steric retraints on the peptide dictate that these amino groups may only coordinate to iron atoms via intermolecular bonds, thus leading to the polymerization of the peptide. Cyanide binding studies are in agreement with these conclusions and also yield a value of 3.6 X 10(6) M-1 s-1 for the intrinsic combination constant of CN- anion with the haem. A model is proposed which describes the pH-dependent properties of the ferric undecapeptide.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0014-2956 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:20304 Approved no  
  Call Number Equine Behaviour @ team @ Serial 3814  
Permanent link to this record
 

 
Author Wasserman, E.A. openurl 
  Title The science of animal cognition: past, present, and future Type Journal Article
  Year 1997 Publication Journal of Experimental Psychology. Animal Behavior Processes Abbreviated Journal J Exp Psychol Anim Behav Process  
  Volume 23 Issue 2 Pages 123-135  
  Keywords Animal Communication; Animal Population Groups/*psychology; Animals; Behavior, Animal; Behavioral Sciences/*trends; *Cognition; Evolution; Forecasting; Humans; Intelligence  
  Abstract (up) The field of animal cognition is strongly rooted in the philosophy of mind and in the theory of evolution. Despite these strong roots, work during the most famous and active period in the history of our science-the 1930s, 1940s, and 1950s-may have diverted us from the very questions that were of greatest initial interest to the comparative analysis of learning and behavior. Subsequently, the field has been in steady decline despite its increasing breadth and sophistication. Renewal of the field of animal cognition may require a return to the original questions of animal communication and intelligence using the most advanced tools of modern psychological science. Reclaiming center stage in contemporary psychology will be difficult; planning that effort with a host of strategies should enhance the chances of success.  
  Address Department of Psychology, University of Iowa, Iowa City 52242-1407, USA. ed-wasserman@uiowa.edu  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0097-7403 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:9095537 Approved no  
  Call Number Equine Behaviour @ team @ Serial 2779  
Permanent link to this record
 

 
Author Hagen, S.J.; Eaton, W.A. doi  openurl
  Title Two-state expansion and collapse of a polypeptide Type Journal Article
  Year 2000 Publication Journal of Molecular Biology Abbreviated Journal J Mol Biol  
  Volume 301 Issue 4 Pages 1019-1027  
  Keywords Animals; Computer Simulation; Cytochrome c Group/*chemistry/*metabolism; Horses; Kinetics; Lasers; Models, Chemical; Peptides/*chemistry/*metabolism; Protein Conformation; Protein Denaturation; *Protein Folding; Spectrometry, Fluorescence; Temperature; Thermodynamics  
  Abstract (up) The initial phase of folding for many proteins is presumed to be the collapse of the polypeptide chain from expanded to compact, but still denatured, conformations. Theory and simulations suggest that this collapse may be a two-state transition, characterized by barrier-crossing kinetics, while the collapse of homopolymers is continuous and multi-phasic. We have used a laser temperature-jump with fluorescence spectroscopy to measure the complete time-course of the collapse of denatured cytochrome c with nanosecond time resolution. We find the process to be exponential in time and thermally activated, with an apparent activation energy approximately 9 k(B)T (after correction for solvent viscosity). These results indicate that polypeptide collapse is kinetically a two-state transition. Because of the observed free energy barrier, the time scale of polypeptide collapse is dramatically slower than is predicted by Langevin models for homopolymer collapse.  
  Address Laboratory of Chemical Physics, NIDDK, National Institutes of Health, Building 5, Bethesda, MD, 20892-0520, USA  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-2836 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:10966803 Approved no  
  Call Number Equine Behaviour @ team @ Serial 3790  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print