toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author McGuigan, M.P.; Wilson, A.M. openurl 
  Title The effect of gait and digital flexor muscle activation on limb compliance in the forelimb of the horse Equus caballus Type Journal Article
  Year 2003 Publication The Journal of Experimental Biology Abbreviated Journal J Exp Biol  
  Volume 206 Issue Pt 8 Pages 1325-1336  
  Keywords Animals; Biomechanics; Forelimb/anatomy & histology/*physiology; Gait/*physiology; Horses/anatomy & histology/*physiology; Muscle Contraction/*physiology; Running  
  Abstract (up) A horse's legs are compressed during the stance phase, storing and then returning elastic strain energy in spring-like muscle-tendon units. The arrangement of the muscle-tendon units around the lever-like joints means that as the leg shortens the muscle-tendon units are stretched. The forelimb anatomy means that the leg can be conceptually divided into two springs: the proximal spring, from the scapula to the elbow, and the distal spring, from the elbow to the foot. In this paper we report the results of a series of experiments testing the hypothesis that there is minimal scope for muscle contraction in either spring to adjust limb compliance. Firstly, we demonstrate that the distal, passive leg spring changes length by 127 mm (range 106-128 mm) at gallop and the proximal spring by 12 mm (9-15 mm). Secondly, we demonstrate that there is a linear relationship between limb force and metacarpo-phalangeal (MCP) joint angle that is minimally influenced by digital flexor muscle activation in vitro or as a function of gait in vivo. Finally, we determined the relationship between MCP joint angle and vertical ground-reaction force at trot and then predicted the forelimb peak vertical ground-reaction force during a 12 m s(-1) gallop on a treadmill. These were 12.79 N kg(-1) body mass (BM) (range 12.07-13.73 N kg(-1) BM) for the lead forelimb and 15.23 N kg(-1) BM (13.51-17.10 N kg(-1) BM) for the non-lead forelimb.  
  Address Structure and Motion Laboratory, Veterinary Basic Sciences, The Royal Veterinary College, Hawkshead Lane, North Mymms, Hatfield, Hertfordshire AL9 7TA, UK. m.p.mcguigan@leeds.ac.uk  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-0949 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:12624168 Approved no  
  Call Number Equine Behaviour @ team @ Serial 3655  
Permanent link to this record
 

 
Author Summerley, H.L.; Thomason, J.J.; Bignell, W.W. openurl 
  Title Effect of rider and riding style on deformation of the front hoof wall in warmblood horses Type Journal Article
  Year 1998 Publication Equine Veterinary Journal. Supplement Abbreviated Journal Equine Vet J Suppl  
  Volume Issue 26 Pages 81-85  
  Keywords Animals; Female; Gait/*physiology; Hoof and Claw/*physiology; Horses/*physiology; Male; Videotape Recording; Weight-Bearing  
  Abstract (up) A rider modifies the weight distribution and dynamic balance of the horse. But what effect does a rider have on the mechanical behaviour of the hoof during each stance phase? Does riding style have any effect on this behaviour? We attempted to answer these questions using strains recorded from 5 rosette strain gauges glued to the surface of the front hooves of 4 Warmblood horses. Comparisons were made between strains with and without a rider, and when the rider was sitting, rising at a trot, or in a forward seated position. The change in strains from trot to lead or nonlead at a canter, and the effect of turning were also studied. Changing lead at a canter had as least as much effect on strain magnitudes as did turning; strains were up to 43% higher for the nonlead foot, but with little redistribution. Perhaps surprisingly, strains were significantly lower on the quarters by up to 30% with a rider than without, with a 10% increase or decrease at the toe, depending on the individual. Riding style changed strain magnitudes by up to 20% and also caused strain redistribution: strains were higher medially for sitting, and laterally for forward seat, with strains for a rising trot being more evenly distributed and intermediate in magnitude. Studying the range of, and causes of variation in hoof wall strain gives baseline data aimed, in the long term, at providing a biomechanical definition of hoof balance.  
  Address Department of Biomedical Sciences, University of Guelph, Ontario, Canada  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes PMID:9932097 Approved no  
  Call Number refbase @ user @ Serial 1934  
Permanent link to this record
 

 
Author Clayton, H.M.; Lanovaz, J.L.; Schamhardt, H.C.; van Wessum, R. openurl 
  Title The effects of a rider's mass on ground reaction forces and fetlock kinematics at the trot Type Journal Article
  Year 1999 Publication Equine Veterinary Journal. Supplement Abbreviated Journal Equine Vet J Suppl  
  Volume 30 Issue Pages 218-221  
  Keywords Animals; Body Weight; Computer Simulation; Gait/*physiology; Horses/*physiology; Physical Conditioning, Animal/*physiology; Stress, Mechanical; Weight-Bearing/*physiology  
  Abstract (up) Ground reaction force (GRF) measurements are often normalised to body mass to facilitate inter-individual comparisons. The objective of this study was to explore the effect of a rider on the GRFs and fetlock joint kinematics of trotting horses. The subjects were 5 dressage-trained horses and 3 experienced dressage riders. Ground reaction force measurements and sagittal view videotapes were recorded as the horses trotted at the same velocity in hand (3.49 +/- 0.52 m/s) and with a rider (3.49 +/- 0.46 m/s). Data were time-normalised to stance duration. Ground reaction force measurements were expressed in absolute terms and normalised to the system mass (horse or horse plus rider). All the horses showed changes in the same direction when comparing the ridden condition with the in-hand condition. There was an increase in the absolute peak vertical GRFs of the fore- and hindlimbs with a rider. However, the mass-normalised peak vertical GRFs were lower for the ridden condition, with the peak occurring later in the forelimbs and earlier in the hindlimbs compared with the inhand condition. Maximal fetlock angle and its time of occurrence were similar for the 2 conditions, but the fore fetlock joint was more extended during the later part of the stance phase in ridden horses. The presence of a rider appeared to affect the GRFs and fetlock joint kinematics differently in the fore- and hindlimbs, and the ridden horse did not seem to be equivalent to a proportionately larger horse. This should be considered when normalising for body mass in studies comparing horses in hand and ridden horses.  
  Address Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing 48824-1314, USA  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes PMID:10659255 Approved no  
  Call Number Equine Behaviour @ team @ Serial 3733  
Permanent link to this record
 

 
Author Clayton, H.M. openurl 
  Title Comparison of the stride kinematics of the collected, working, medium and extended trot in horses Type Journal Article
  Year 1994 Publication Equine Veterinary Journal Abbreviated Journal Equine Vet J  
  Volume 26 Issue 3 Pages 230-234  
  Keywords Analysis of Variance; Animals; Biomechanics; Female; Forelimb/anatomy & histology/physiology; Gait/*physiology; Hindlimb/anatomy & histology/physiology; Horses/anatomy & histology/*physiology; Locomotion/physiology; Male; Motion Pictures  
  Abstract (up) Highly-trained dressage horses were studied to test the hypothesis that stride length is altered independently of stride duration in the transitions between the collected, working, medium and extended trot. Six well-trained dressage horses were filmed at a frame rate of 150 frames/s performing the collected, working, medium and extended trots in a sand arena. Temporal, linear and angular data were extracted from the films, with 4 strides being analysed for each horse and gait type. There were no significant asymmetries between the left and rights limbs or diagonals when data from the whole group were pooled, but 3 horses showed asymmetries in one or more variables (P < 0.01). Analysis of variance and post-hoc tests indicated that the speed increased significantly (P < 0.01) from the collected (3.20 m/s) to the working (3.61 m/s) to the medium (4.47 m/s) to the extended (4.93 m/s) trot. The increases in speed were associated with a significant increase in stride length from 250 cm in the collected trot, to 273 cm in the working trot, 326 cm in the medium trot and 355 cm in the extended trot (P < 0.01). The lengthening of the stride was a result of increases between each gait type in the over-reach distance, whereas the diagonal distance was significantly longer in the extended than the collected trot only (P < 0.01). The stride duration tended to decrease as speed increased, and the difference became significant between the collected and extended trots (P < 0.01).  
  Address Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Canada  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0425-1644 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:8542844 Approved no  
  Call Number Equine Behaviour @ team @ Serial 3746  
Permanent link to this record
 

 
Author Morales, J.L.; Manchado, M.; Vivo, J.; Galisteo, A.M.; Aguera, E.; Miro, F. openurl 
  Title Angular kinematic patterns of limbs in elite and riding horses at trot Type Journal Article
  Year 1998 Publication Equine Veterinary Journal Abbreviated Journal Equine Vet J  
  Volume 30 Issue 6 Pages 528-533  
  Keywords Animals; Biomechanics; Breeding; Extremities/*physiology; Gait/*physiology; Horses/*physiology; Image Processing, Computer-Assisted; Joints/*physiology; Male; Video Recording  
  Abstract (up) Normal speed videography was used to determine the angular parameters of 28 Spanish Thoroughbreds at trot. Horses were divided into 3 groups: Group UT, comprising 9 animals (provided by the VII National Stud, Cordoba, Spain) which had undergone no specific training programme and which were hand led at the trot; Group T, formed by 19 horses considered to be highly bred and trained, and which were also hand led; and Group RT, comprising the same horses as the latter group but this time trotted by a rider. Each animal was filmed 6 times from the right-hand side, using a Hi8 (25 Hz) video camera. Angular parameters for fore- and hindlimb joints were measured in each stride from computer-grabbed frames and entered into a spreadsheet for calculation; parameters included maximum and minimum angles, range of motion, and angles at landing, lift off and maximum hoof height; the times at which maximum angle, minimum angle, lift off and maximum hoof height occurred were calculated as percentages of total stride duration. Stride velocity (mean [s.d.]) was 4.01 (0.62), 3.60 (0.34) and 3.07 (0.36) m/s for Groups UT, T and RT, respectively. Data were then compared between Groups UT-T and Groups T-RT. Compared with Group UT, horses from Group T featured a shorter stance percentage (P<0.001) in both fore- and hindlimbs. The range of motion in forelimbs was smaller (P<0.05), due to lower retraction (P<0.001); moreover, maximum retraction appeared earlier (P<0.05). Greater scapular inclination was in evidence (P<0.05) and the shoulder joint extended further (P<0.05). Fore- and hind fetlock joints revealed a relatively shorter hyperextension period during the stance phase (P<0.01). Compared with Group T, horses from Group RT had a longer stance percentage, with belated maximum retraction of the fore- and hindlimbs. The range of movement in scapular inclination was greater (P<0.05), due to a smaller minimum angle (P<0.01), and the shoulder joint flexed more (P<0.05). The elbow joint extended more and for longer during the stance phase. Initial extension of the hip joint (P<0.05) and tarsus (P<0.001) lasted longer. The carpal and fore and hind fetlock joints recorded relatively longer hyperextension times, in addition to greater hyperextension during the stance phase. The results from the present study suggest that rider-effect must be taken in consideration when well gaited horses are selected for dressage purposes.  
  Address Department of Compared Anatomy and Pathology, University of Cordoba, Veterinary Faculty, Spain  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0425-1644 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:9844972 Approved no  
  Call Number Equine Behaviour @ team @ Serial 3734  
Permanent link to this record
 

 
Author Davies, H.M.S. openurl 
  Title The timing and distribution of strains around the surface of the midshaft of the third metacarpal bone during treadmill exercise in one Thoroughbred racehorse Type Journal Article
  Year 2005 Publication Australian Veterinary Journal Abbreviated Journal Aust Vet J  
  Volume 83 Issue 3 Pages 157-162  
  Keywords Animals; Exercise Test/veterinary; Female; Gait/*physiology; Horses/*physiology; Metacarpus/*physiology; Motor Activity/physiology; Physical Conditioning, Animal/*physiology; Stress, Mechanical; Weight-Bearing/physiology  
  Abstract (up) OBJECTIVE: To confirm that the midshaft dorsal cortex of the third metacarpal bone experienced higher compressive strains during fast exercise than the medial or lateral cortices, and that the strain peak occurred earlier in the hoof-down phase of the stride on the dorsal cortex than the medial or lateral cortices. DESIGN: Observations of a single horse. PROCEDURE: Strains were collected from a single, sound, 3-year-old Thoroughbred mare during treadmill exercise from rosette strain gauges implanted onto the medial, lateral and dorsal surfaces of the midshaft of the right cannon bone, simultaneously with data from a hoof switch that showed when the hoof was in the stance phase. RESULTS: Peak compressive strains on the dorsal surface of the third metacarpal bone were proportional to exercise speed and occurred at about 30% of stance. Peak compressive strains on the medial surface of the non-lead limb reached a maximum at a speed around 10 m/s and occurred at mid-stance. Peak compressive strains on the lateral surface varied in timing and size between strides at all exercise speeds, but remained less than -2000 microstrains. CONCLUSIONS: The timing of peak compressive strains on the dorsal cortex suggests a relationship to deceleration of the limb following hoof impact, so the main determinants of their size would be exercise speed and turning (as shown in previous experiments). This experiment confirms data from other laboratories that were published but not discussed, that peak compressive strains on the medial surface occur at mid-stance. This suggests that they are related to the support of body weight. The strains on the lateral cortex occurred at variable times so may be associated with the maintenance of balance as well as the support of body weight. Understanding the loading of the third metacarpal bone will help to determine causes of damage to it and ways in which the bone might be conditioned to prevent such damage.  
  Address Department of Veterinary Science, University of Melbourne, Parkville, Victoria 3010. h.davies@unimelb.edu.au  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0005-0423 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:15825628 Approved no  
  Call Number Serial 1891  
Permanent link to this record
 

 
Author Santamaria, S.; Bobbert, M.F.; Back, W.; Barneveld, A.; van Weeren, P.R. openurl 
  Title Effect of early training on the jumping technique of horses Type Journal Article
  Year 2005 Publication American Journal of Veterinary Research Abbreviated Journal Am J Vet Res  
  Volume 66 Issue 3 Pages 418-424  
  Keywords Age Factors; Analysis of Variance; Animals; Biomechanics; Forelimb/physiology; Gait/*physiology; Hindlimb/physiology; Horses/growth & development/*physiology; Locomotion/*physiology; Models, Biological; Physical Conditioning, Animal/*methods  
  Abstract (up) OBJECTIVE: To investigate the effects of early training for jumping by comparing the jumping technique of horses that had received early training with that of horses raised conventionally. ANIMALS: 40 Dutch Warmblood horses. PROCEDURE: The horses were analyzed kinematically during free jumping at 6 months of age. Subsequently, they were allocated into a control group that was raised conventionally and an experimental group that received 30 months of early training starting at 6 months of age. At 4 years of age, after a period of rest in pasture and a short period of training with a rider, both groups were analyzed kinematically during free jumping. Subsequently, both groups started a 1-year intensive training for jumping, and at 5 years of age, they were again analyzed kinematically during free jumping. In addition, the horses competed in a puissance competition to test maximal performance. RESULTS: Whereas there were no differences in jumping technique between experimental and control horses at 6 months of age, at 4 years, the experimental horses jumped in a more effective manner than the control horses; they raised their center of gravity less yet cleared more fences successfully than the control horses. However, at 5 years of age, these differences were not detected. Furthermore, the experimental horses did not perform better than the control horses in the puissance competition. CONCLUSIONS AND CLINICAL RELEVANCE: Specific training for jumping of horses at an early age is unnecessary because the effects on jumping technique and jumping capacity are not permanent.  
  Address Department of Equine Sciences, Faculty of Veterinary Medicine, Utrecht University, NL-3584 CM Utrecht, The Netherlands  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0002-9645 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:15822585 Approved no  
  Call Number Equine Behaviour @ team @ Serial 4037  
Permanent link to this record
 

 
Author Santamaria, S.; Bobbert, M.E.; Back, W.; Barneveld, A.; van Weeren, P.R. openurl 
  Title Variation in free jumping technique within and among horses with little experience in show jumping Type Journal Article
  Year 2004 Publication American Journal of Veterinary Research Abbreviated Journal Am J Vet Res  
  Volume 65 Issue 7 Pages 938-944  
  Keywords *Acceleration; Analysis of Variance; Animals; Biomechanics; Forelimb/physiology; Gait/*physiology; Hindlimb/physiology; Horses/*physiology; Locomotion/*physiology; Models, Biological; Video Recording  
  Abstract (up) OBJECTIVE: To quantify variation in the jumping technique within and among young horses with little jumping experience, establish relationships between kinetic and kinematic variables, and identify a limited set of variables characteristic for detecting differences in jumping performance among horses. ANIMALS: Fifteen 4-year-old Dutch Warmblood horses. PROCEDURE: The horses were raised under standardized conditions and trained in accordance with a fixed protocol for a short period. Subsequently, horses were analyzed kinematically during free jumping over a fence with a height of 1.05 m. RESULTS: Within-horse variation in all variables that quantified jumping technique was smaller than variation among horses. However, some horses had less variation than others. Height of the center of gravity (CG) at the apex of the jump ranged from 1.80 to 2.01 m among horses; this variation could be explained by the variation in vertical velocity of the CG at takeoff (r, 0.78). Horses that had higher vertical velocity at takeoff left the ground and landed again farther from the fence, had shorter push-off phases for the forelimbs and hind limbs, and generated greater vertical acceleration of the CG primarily during the hind limb push-off. However, all horses cleared the fence successfully, independent of jumping technique. CONCLUSIONS AND CLINICAL RELEVANCE: Each horse had its own jumping technique. Differences among techniques were characterized by variations in the vertical velocity of the CG at takeoff. It must be determined whether jumping performance later in life can be predicted from observing free jumps of young horses.  
  Address Department of Equine Sciences, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 12, NL-3584 CM Utrecht, The Netherlands  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0002-9645 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:15281652 Approved no  
  Call Number Equine Behaviour @ team @ Serial 3772  
Permanent link to this record
 

 
Author Rhodin, M.; Johnston, C.; Holm, K.R.; Wennerstrand, J.; Drevemo, S. openurl 
  Title The influence of head and neck position on kinematics of the back in riding horses at the walk and trot Type Journal Article
  Year 2005 Publication Equine Veterinary Journal Abbreviated Journal Equine Vet J  
  Volume 37 Issue 1 Pages 7-11  
  Keywords Acceleration; Animals; Back/*physiology; Biomechanics; Exercise Test/veterinary; Female; Gait/*physiology; Head/*physiology; Horses/*physiology; Male; Movement/physiology; Neck/*physiology; Walking/physiology  
  Abstract (up) REASONS FOR PERFORMING STUDY: A common opinion among riders and in the literature is that the positioning of the head and neck influences the back of the horse, but this has not yet been measured objectively. OBJECTIVES: To evaluate the effect of head and neck position on the kinematics of the back in riding horses. METHODS: Eight Warmblood riding horses in regular work were studied on a treadmill at walk and trot with the head and neck in 3 different predetermined positions achieved by side reins attached to the bit and to an anticast roller. The 3-dimensional movement of the thoracolumbar spine was measured from the position of skin-fixed markers recorded by infrared videocameras. RESULTS: Head and neck position influenced the movements of the back, especially at the walk. When the head was fixed in a high position at the walk, the flexion-extension movement and lateral bending of the lumbar back, as well as the axial rotation, were significantly reduced when compared to movements with the head free or in a low position. At walk, head and neck position also significantly influenced stride length, which was shortest with the head in a high position. At trot, the stride length was independent of head position. CONCLUSIONS: Restricting and restraining the position and movement of the head and neck alters the movement of the back and stride characteristics. With the head and neck in a high position stride length and flexion and extension of the caudal back were significantly reduced. POTENTIAL RELEVANCE: Use of side reins in training and rehabilitation programmes should be used with an understanding of the possible effects on the horse's back.  
  Address Department of Anatomy, Swedish University of Agricultural Sciences, 750 07 Uppsala, Sweden  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0425-1644 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:15651727 Approved no  
  Call Number Equine Behaviour @ team @ Serial 3657  
Permanent link to this record
 

 
Author Fruehwirth, B.; Peham, C.; Scheidl, M.; Schobesberger, H. openurl 
  Title Evaluation of pressure distribution under an English saddle at walk, trot and canter Type Journal Article
  Year 2004 Publication Equine Veterinary Journal Abbreviated Journal Equine Vet J  
  Volume 36 Issue 8 Pages 754-757  
  Keywords Animals; Back/*physiology; Biomechanics; Body Weight/physiology; Exercise Test/veterinary; Gait/*physiology; Horses/*physiology; Humans; Locomotion/*physiology; Pressure  
  Abstract (up) REASONS FOR PERFORMING STUDY: Basic information about the influence of a rider on the equine back is currently lacking. HYPOTHESIS: That pressure distribution under a saddle is different between the walk, trot and canter. METHODS: Twelve horses without clinical signs of back pain were ridden. At least 6 motion cycles at walk, trot and canter were measured kinematically. Using a saddle pad, the pressure distribution was recorded. The maximum overall force (MOF) and centre of pressure (COP) were calculated. The range of back movement was determined from a marker placed on the withers. RESULTS: MOF and COP showed a consistent time pattern in each gait. MOF was 12.1 +/- 1.2 and 243 +/- 4.6 N/kg at walk and trot, respectively, in the ridden horse. In the unridden horse MOF was 172.7 +/- 11.8 N (walk) and 302.4 +/- 33.9 N (trot). At ridden canter, MOF was 27.2 +/- 4.4 N/kg. The range of motion of the back of the ridden horse was significantly lower compared to the unridden, saddled horse. CONCLUSIONS AND POTENTIAL RELEVANCE: Analyses may help quantitative and objective evaluation of the interaction between rider and horse as mediated through the saddle. The information presented is therefore of importance to riders, saddlers and equine clinicians. With the technique used in this study, style, skill and training level of different riders can be quantified, which would give the opportunity to detect potentially harmful influences and create opportunities for improvement.  
  Address Movement Science Group, Department V, Clinic of Orthopaedics in Ungulates, University of Veterinary Medicine, Vienna, Austria  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0425-1644 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:15656510 Approved no  
  Call Number Equine Behaviour @ team @ Serial 4041  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print