toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Friederici, A.D.; Alter, K. url  doi
openurl 
  Title Lateralization of auditory language functions: a dynamic dual pathway model Type Journal Article
  Year 2004 Publication Brain and Language Abbreviated Journal (up) Brain Lang  
  Volume 89 Issue 2 Pages 267-276  
  Keywords Auditory Pathways/physiology; Brain Mapping; Comprehension/*physiology; Dominance, Cerebral/*physiology; Frontal Lobe/*physiology; Humans; Nerve Net/physiology; Phonetics; Semantics; Speech Acoustics; Speech Perception/*physiology; Temporal Lobe/*physiology  
  Abstract Spoken language comprehension requires the coordination of different subprocesses in time. After the initial acoustic analysis the system has to extract segmental information such as phonemes, syntactic elements and lexical-semantic elements as well as suprasegmental information such as accentuation and intonational phrases, i.e., prosody. According to the dynamic dual pathway model of auditory language comprehension syntactic and semantic information are primarily processed in a left hemispheric temporo-frontal pathway including separate circuits for syntactic and semantic information whereas sentence level prosody is processed in a right hemispheric temporo-frontal pathway. The relative lateralization of these functions occurs as a result of stimulus properties and processing demands. The observed interaction between syntactic and prosodic information during auditory sentence comprehension is attributed to dynamic interactions between the two hemispheres.  
  Address Max Planck Institute of Cognitive Neuroscience, P.O. Box 500 355, 04303 Leipzig, Germany. angelafr@cns.mpg.de  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0093-934X ISBN Medium  
  Area Expedition Conference  
  Notes PMID:15068909 Approved no  
  Call Number Equine Behaviour @ team @ Serial 4722  
Permanent link to this record
 

 
Author Shoshani, J.; Kupsky, W.J.; Marchant, G.H. doi  openurl
  Title Elephant brain. Part I: gross morphology, functions, comparative anatomy, and evolution Type Journal Article
  Year 2006 Publication Brain Research Bulletin Abbreviated Journal (up) Brain Res Bull  
  Volume 70 Issue 2 Pages 124-157  
  Keywords Animals; Brain/*anatomy & histology/blood supply/*physiology; Cats; Chinchilla; Elephants/*anatomy & histology/*physiology; Equidae; *Evolution; Female; Guinea Pigs; Haplorhini; Humans; Hyraxes; Male; Pan troglodytes; Sheep; Wolves  
  Abstract We report morphological data on brains of four African, Loxodonta africana, and three Asian elephants, Elephas maximus, and compare findings to literature. Brains exhibit a gyral pattern more complex and with more numerous gyri than in primates, humans included, and in carnivores, but less complex than in cetaceans. Cerebral frontal, parietal, temporal, limbic, and insular lobes are well developed, whereas the occipital lobe is relatively small. The insula is not as opercularized as in man. The temporal lobe is disproportionately large and expands laterally. Humans and elephants have three parallel temporal gyri: superior, middle, and inferior. Hippocampal sizes in elephants and humans are comparable, but proportionally smaller in elephant. A possible carotid rete was observed at the base of the brain. Brain size appears to be related to body size, ecology, sociality, and longevity. Elephant adult brain averages 4783 g, the largest among living and extinct terrestrial mammals; elephant neonate brain averages 50% of its adult brain weight (25% in humans). Cerebellar weight averages 18.6% of brain (1.8 times larger than in humans). During evolution, encephalization quotient has increased by 10-fold (0.2 for extinct Moeritherium, approximately 2.0 for extant elephants). We present 20 figures of the elephant brain, 16 of which contain new material. Similarities between human and elephant brains could be due to convergent evolution; both display mosaic characters and are highly derived mammals. Humans and elephants use and make tools and show a range of complex learning skills and behaviors. In elephants, the large amount of cerebral cortex, especially in the temporal lobe, and the well-developed olfactory system, structures associated with complex learning and behavioral functions in humans, may provide the substrate for such complex skills and behavior.  
  Address Department of Biology, University of Asmara, P.O. Box 1220, Asmara, Eritrea (Horn of Africa). hezy@bio.uoa.edu.er  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0361-9230 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:16782503 Approved no  
  Call Number Equine Behaviour @ team @ Serial 2623  
Permanent link to this record
 

 
Author Lefebvre, L.; Reader, S.M.; Sol, D. doi  openurl
  Title Brains, Innovations and Evolution in Birds and Primates Type Journal Article
  Year 2004 Publication Brain, Behavior and Evolution Abbreviated Journal (up) Brain. Behav. Evol.  
  Volume 63 Issue 4 Pages 233-246  
  Keywords Innovation W Brain evolution W Hyperstriatum ventrale W Neostriatum W Isocortex W Birds W Primates W Tool use W Invasion biology  
  Abstract Abstract

Several comparative research programs have focusedon the cognitive, life history and ecological traits thataccount for variation in brain size. We review one ofthese programs, a program that uses the reported frequencyof behavioral innovation as an operational measureof cognition. In both birds and primates, innovationrate is positively correlated with the relative size of associationareas in the brain, the hyperstriatum ventrale andneostriatum in birds and the isocortex and striatum inprimates. Innovation rate is also positively correlatedwith the taxonomic distribution of tool use, as well asinterspecific differences in learning. Some features ofcognition have thus evolved in a remarkably similar wayin primates and at least six phyletically-independent avianlineages. In birds, innovation rate is associated withthe ability of species to deal with seasonal changes in theenvironment and to establish themselves in new regions,and it also appears to be related to the rate atwhich lineages diversify. Innovation rate provides a usefultool to quantify inter-taxon differences in cognitionand to test classic hypotheses regarding the evolution ofthe brain.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0006-8977 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Equine Behaviour @ team @ Serial 4738  
Permanent link to this record
 

 
Author Harland, M.M.; Stewart, A.J.; Marshall, A.E.; Belknap, E.B. url  openurl
  Title Diagnosis of deafness in a horse by brainstem auditory evoked potential Type Journal Article
  Year 2006 Publication The Canadian Veterinary Journal. La Revue Veterinaire Canadienne Abbreviated Journal (up) Can Vet J  
  Volume 47 Issue 2 Pages 151-154  
  Keywords Acoustic Stimulation/veterinary; Animals; Deafness/congenital/diagnosis/*veterinary; Evoked Potentials, Auditory, Brain Stem/*physiology; Horse Diseases/congenital/*diagnosis; Horses; Male; Pigmentation/physiology; Sensitivity and Specificity  
  Abstract Deafness was confirmed in a blue-eyed, 3-year-old, overo paint horse by brainstem auditory evoked potential. Congenital inherited deafness associated with lack of facial pigmentation was suspected. Assessment of hearing should be considered, especially in paint horses, at the time of pre-purchase examination. Brainstem auditory evoked potential assessment is well tolerated and accurate.  
  Address Department of Clinical Sciences, College of Veterinary Medicine, Auburn University, Wire Road, Auburn, Alabama, USA  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0008-5286 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:16579041 Approved no  
  Call Number Equine Behaviour @ team @ Serial 5680  
Permanent link to this record
 

 
Author Panksepp, J. doi  openurl
  Title Affective consciousness: Core emotional feelings in animals and humans Type Journal Article
  Year 2005 Publication Consciousness and Cognition Abbreviated Journal (up) Conscious Cogn  
  Volume 14 Issue 1 Pages 30-80  
  Keywords Affect/*physiology; Animals; Bonding, Human-Pet; Brain/*physiology; Consciousness/*physiology; Fear; Humans; Limbic System/physiology; Social Behavior; Species Specificity; Unconscious (Psychology)  
  Abstract The position advanced in this paper is that the bedrock of emotional feelings is contained within the evolved emotional action apparatus of mammalian brains. This dual-aspect monism approach to brain-mind functions, which asserts that emotional feelings may reflect the neurodynamics of brain systems that generate instinctual emotional behaviors, saves us from various conceptual conundrums. In coarse form, primary process affective consciousness seems to be fundamentally an unconditional “gift of nature” rather than an acquired skill, even though those systems facilitate skill acquisition via various felt reinforcements. Affective consciousness, being a comparatively intrinsic function of the brain, shared homologously by all mammalian species, should be the easiest variant of consciousness to study in animals. This is not to deny that some secondary processes (e.g., awareness of feelings in the generation of behavioral choices) cannot be evaluated in animals with sufficiently clever behavioral learning procedures, as with place-preference procedures and the analysis of changes in learned behaviors after one has induced re-valuation of incentives. Rather, the claim is that a direct neuroscientific study of primary process emotional/affective states is best achieved through the study of the intrinsic (“instinctual”), albeit experientially refined, emotional action tendencies of other animals. In this view, core emotional feelings may reflect the neurodynamic attractor landscapes of a variety of extended trans-diencephalic, limbic emotional action systems-including SEEKING, FEAR, RAGE, LUST, CARE, PANIC, and PLAY. Through a study of these brain systems, the neural infrastructure of human and animal affective consciousness may be revealed. Emotional feelings are instantiated in large-scale neurodynamics that can be most effectively monitored via the ethological analysis of emotional action tendencies and the accompanying brain neurochemical/electrical changes. The intrinsic coherence of such emotional responses is demonstrated by the fact that they can be provoked by electrical and chemical stimulation of specific brain zones-effects that are affectively laden. For substantive progress in this emerging research arena, animal brain researchers need to discuss affective brain functions more openly. Secondary awareness processes, because of their more conditional, contextually situated nature, are more difficult to understand in any neuroscientific detail. In other words, the information-processing brain functions, critical for cognitive consciousness, are harder to study in other animals than the more homologous emotional/motivational affective state functions of the brain.  
  Address Department of Psychology, Bowling Green State University, Bowling Green, OH 43403, USA. jpankse@bgnet.bgsu.ed  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1053-8100 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:15766890 Approved no  
  Call Number Equine Behaviour @ team @ Serial 4159  
Permanent link to this record
 

 
Author Pinchbeck, G.L.; Clegg, P.D.; Proudman, C.J.; Morgan, K.L.; French, N.P. openurl 
  Title A prospective cohort study to investigate risk factors for horse falls in UK hurdle and steeplechase racing Type Journal Article
  Year 2004 Publication Equine Veterinary Journal Abbreviated Journal (up) Equine Vet J  
  Volume 36 Issue 7 Pages 595-601  
  Keywords *Accidental Falls/mortality/statistics & numerical data; Age Factors; Animal Welfare; Animals; Athletic Injuries/epidemiology/etiology/mortality/*veterinary; Cohort Studies; Great Britain; Horses/*injuries; Logistic Models; Odds Ratio; Prospective Studies; Questionnaires; Rain; Risk Factors; Safety; Sports  
  Abstract REASONS FOR PERFORMING STUDY: Equine fatalities during racing continue to be a major welfare concern and falls at fences are responsible for a proportion of all equine fatalities recorded on racecourses. OBJECTIVES: To identify and quantify risk factors for horse falls in National Hunt (NH) racing and to report the frequency of falling and falling-associated fatalities. METHODS: A prospective cohort study was conducted on 2879 horse starts in hurdle and steeplechase races on 6 UK racecourses. Any horse that suffered a fall at a steeplechase or hurdle fence during the race was defined as a case. Data were obtained by interview and observations in the parade ring and from commercial databases. Multivariable logistic regression models, allowing for clustering at the level of the track, were used to identify the relationship between variables and the risk of falling. RESULTS: There were 124 falling cases (32 in hurdling and 92 in steeplechasing) identified. The injury risk of fallers was 8.9% and fatality risk 6.5%. Duration of journey to the racecourse, behaviour in the parade ring and weather at the time of the race were associated with falling in both hurdle and steeplechase racing. Age, amount of rainfall and going were also associated with falling in steeplechase racing. CONCLUSIONS: Falls at fences are significant contributors to equine fatalities during NH racing. Potentially modifiable risk factors identified were the condition of track surfaces and journey time to the racecourse. POTENTIAL RELEVANCE: It is hoped that information from this study may be used in future interventions to improve horse and jockey safety in racing. The study has also identified areas requiring further research, such as equine behaviour and its effect on racing performance, and the effect of light conditions on jumping ability.  
  Address Department of Veterinary Clinical Science, University of Liverpool, Leahurst, Neston, Wirral CH64 7TE, UK  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0425-1644 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:15581324 Approved no  
  Call Number Serial 1898  
Permanent link to this record
 

 
Author Davies, H.M.S.; Merritt, J.S. url  doi
openurl 
  Title Surface strains around the midshaft of the third metacarpal bone during turning Type Journal Article
  Year 2004 Publication Equine Veterinary Journal Abbreviated Journal (up) Equine Veterinary Journal  
  Volume 36 Issue 8 Pages 689-692  
  Keywords horse; exercise; strain; third metacarpal bone; turns  
  Abstract Summary Reasons for performing study: Bone strains quantify skeletal effects of specific exercise and hence assist in designing training programmes to avoid bone injury. Objective: To test whether compressive strains increase on the lateral surface of the inside third metacarpal bone (McIII) and the medial surface of the outside McIII in a turn. Methods: Rosette strain gauges on dorsal, medial and lateral surfaces of the midshaft of the left McIII in 2 Thoroughbred geldings were recorded simultaneously during turning at the walk on a bitumen surface. Results: Medial surface: Compression peaks were larger in the outside limb. Tension peaks were larger in the inside limb and in a tighter turn. On the lateral surface compression and tension peaks were larger on the inside limb, which showed the largest recorded strains (compression of -1400 microstrains). Dorsal compression strains were larger on the outside limb and on a larger circle. Tensile strains were similar in both directions and larger on a larger circle. Conclusions: Compressive strains increased on the lateral surface of the inside McIII and medial surface of the outside McIII in a turn. Potential relevance: Slow-speed turning exercise may be sufficient to maintain bone mechanical characteristics in the inside limb lateral McIII cortex. Further work is needed to confirm these findings and to determine whether faster gaits and/or tighter turns are sufficient to cause bone modelling levels of strain in the medial and lateral McIII cortex.  
  Address  
  Corporate Author Thesis  
  Publisher American Medical Association (AMA) Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0425-1644 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Equine Behaviour @ team @ Serial 6715  
Permanent link to this record
 

 
Author Dunbar, Robin I. M. doi  openurl
  Title The social brain hypothesis Type Journal Article
  Year 1998 Publication Evolutionary Anthropology: Issues, News, and Reviews Abbreviated Journal (up) Evol. Anthropol.  
  Volume 6 Issue 5 Pages 178-190  
  Keywords brain size – neocortex – social brain hypothesis – social skills – mind reading – primates  
  Abstract Conventional wisdom over the past 160 years in the cognitive and neurosciences has assumed that brains evolved to process factual information about the world. Most attention has therefore been focused on such features as pattern recognition, color vision, and speech perception. By extension, it was assumed that brains evolved to deal with essentially ecological problem-solving tasks. © 1998 Wiley-Liss, Inc.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Robin Dunbar is Professor of Evolutionary Psychology and Behavioural Ecology at the University of Liverpool, England. His research primarily focuses on the behavioral ecology of ungulates and human and nonhuman primates, and on the cognitive mechanisms and brain components that underpin the decisions that animals make. He runs a large research group, with graduate students working on many different species on four continents. Approved no  
  Call Number Equine Behaviour @ team @ Serial 4371  
Permanent link to this record
 

 
Author Hrdy, S.B. openurl 
  Title Male-male competition and infanticide among the langurs (Presbytis entellus) of Abu, Rajasthan Type Journal Article
  Year 1974 Publication Folia Primatologica; International Journal of Primatology Abbreviated Journal (up) Folia Primatol (Basel)  
  Volume 22 Issue 1 Pages 19-58  
  Keywords Aggression; Animals; Animals, Newborn; Coitus; *Competitive Behavior; Estrus; Feeding Behavior; Female; *Haplorhini; Homing Behavior; Humans; India; Infanticide; Leadership; Male; Maternal Behavior; Population Density; Pregnancy; Rain; Seasons; Sex Factors; Sexual Behavior, Animal; Social Behavior; Temperature; Vocalization, Animal  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0015-5713 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:4215710 Approved no  
  Call Number Serial 2051  
Permanent link to this record
 

 
Author Schmidt, A.; Aurich, J.; Möstl, E.; Müller, J.; Aurich, C. url  doi
openurl 
  Title Changes in cortisol release and heart rate and heart rate variability during the initial training of 3-year-old sport horses Type Journal Article
  Year 2010 Publication Hormones and Behavior Abbreviated Journal (up) Horm Behav  
  Volume 58 Issue 4 Pages 628-636  
  Keywords Horse; Initial training; Cortisol; Heart rate variability  
  Abstract Based on cortisol release, a variety of situations to which domestic horses are exposed have been classified as stressors but studies on the stress during equestrian training are limited. In the present study, Warmblood stallions (n = 9) and mares (n = 7) were followed through a 9 respective 12-week initial training program in order to determine potentially stressful training steps. Salivary cortisol concentrations, beat-to-beat (RR) interval and heart rate variability (HRV) were determined. The HRV variables standard deviation of the RR interval (SDRR), RMSSD (root mean square of successive RR differences) and the geometric means standard deviation 1 (SD1) and 2 (SD2) were calculated. Nearly each training unit was associated with an increase in salivary cortisol concentrations (p < 0.01). Cortisol release varied between training units and occasionally was more pronounced in mares than in stallions (p < 0.05). The RR interval decreased slightly in response to lunging before mounting of the rider. A pronounced decrease occurred when the rider was mounting, but before the horse showed physical activity (p < 0.001). The HRV variables SDRR, RMSSD and SD1 decreased in response to training and lowest values were reached during mounting of a rider (p < 0.001). Thereafter RR interval and HRV variables increased again. In contrast, SD2 increased with the beginning of lunging (p < 0.05) and no changes in response to mounting were detectable. In conclusion, initial training is a stressor for horses. The most pronounced reaction occurred in response to mounting by a rider, a situation resembling a potentially lethal threat under natural conditions.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0018-506x ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Equine Behaviour @ team @ Serial 5223  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print