toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Vallortigara, G.; Rogers, L.J. url  doi
openurl 
  Title Survival with an asymmetrical brain: advantages and disadvantages of cerebral lateralization Type Journal Article
  Year 2005 Publication The Behavioral and Brain Sciences Abbreviated Journal (up) Behav Brain Sci  
  Volume 28 Issue 4 Pages 575-89; discussion 589-633  
  Keywords Animals; Attention/*physiology; Behavior/*physiology; Behavior, Animal/*physiology; Dominance, Cerebral/*physiology; *Evolution; Humans; Models, Biological; Visual Perception/physiology  
  Abstract Recent evidence in natural and semi-natural settings has revealed a variety of left-right perceptual asymmetries among vertebrates. These include preferential use of the left or right visual hemifield during activities such as searching for food, agonistic responses, or escape from predators in animals as different as fish, amphibians, reptiles, birds, and mammals. There are obvious disadvantages in showing such directional asymmetries because relevant stimuli may be located to the animal's left or right at random; there is no a priori association between the meaning of a stimulus (e.g., its being a predator or a food item) and its being located to the animal's left or right. Moreover, other organisms (e.g., predators) could exploit the predictability of behavior that arises from population-level lateral biases. It might be argued that lateralization of function enhances cognitive capacity and efficiency of the brain, thus counteracting the ecological disadvantages of lateral biases in behavior. However, such an increase in brain efficiency could be obtained by each individual being lateralized without any need to align the direction of the asymmetry in the majority of the individuals of the population. Here we argue that the alignment of the direction of behavioral asymmetries at the population level arises as an “evolutionarily stable strategy” under “social” pressures occurring when individually asymmetrical organisms must coordinate their behavior with the behavior of other asymmetrical organisms of the same or different species.  
  Address Department of Psychology and B.R.A.I.N. Centre for Neuroscience, University of Trieste, 34123 Trieste, Italy. vallorti@univ.trieste.it  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0140-525X ISBN Medium  
  Area Expedition Conference  
  Notes PMID:16209828 Approved no  
  Call Number Equine Behaviour @ team @ Serial 4622  
Permanent link to this record
 

 
Author Bouchard, T.J.J.; Loehlin, J.C. openurl 
  Title Genes, evolution, and personality Type Journal Article
  Year 2001 Publication Behavior Genetics Abbreviated Journal (up) Behav Genet  
  Volume 31 Issue 3 Pages 243-273  
  Keywords Animals; *Evolution; Genetics, Behavioral; Humans; Individuality; Personality/*genetics; Twin Studies  
  Abstract There is abundant evidence, some of it reviewed in this paper, that personality traits are substantially influenced by the genes. Much remains to be understood about how and why this is the case. We argue that placing the behavior genetics of personality in the context of epidemiology, evolutionary psychology, and neighboring psychological domains such as interests and attitudes should help lead to new insights. We suggest that important methodological advances, such as measuring traits from multiple viewpoints, using large samples, and analyzing data by modern multivariate techniques, have already led to major changes in our view of such perennial puzzles as the role of “unshared environment” in personality. In the long run, but not yet, approaches via molecular genetics and brain physiology may also make decisive contributions to understanding the heritability of personality traits. We conclude that the behavior genetics of personality is alive and flourishing but that there remains ample scope for new growth and that much social science research is seriously compromised if it does not incorporate genetic variation in its explanatory models.  
  Address Department of Psychology. University of Minnesota, Minneapolis 55455, USA. bouch001@tc.umn.edu  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0001-8244 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:11699599 Approved no  
  Call Number Equine Behaviour @ team @ Serial 4142  
Permanent link to this record
 

 
Author Matsumura, S.; Kobayashi, T. url  doi
openurl 
  Title A game model for dominance relations among group-living animals Type Journal Article
  Year 1998 Publication Behavioral Ecology and Sociobiology Abbreviated Journal (up) Behav. Ecol. Sociobiol.  
  Volume 42 Issue 2 Pages 77-84  
  Keywords Dominance – Hawk-dove games – Resource-holding potential – Asymmetry – Evolutionarily stable strategy  
  Abstract Abstract   We present here an attempt to understand behaviors of dominant individuals and of subordinate individuals as behavior strategies in an asymmetric “hawk-dove” game. We assume that contestants have perfect information about relative fighting ability and the value of the resource. Any type of asymmetry, both relevant to and irrelevant to the fighting ability, can be considered. It is concluded that evolutionarily stable strategies (ESSs) depend on the resource value (V), the cost of injury (D), and the probability that the individual in one role will win (x). Different ESSs can exist even when values of V, D, and x are the same. The characteristics of dominance relations detected by observers may result from the ESSs that the individuals are adopting. The model explains some characteristics of dominance relations, for example, the consistent outcome of contests, the rare occurrence of escalated fights, and the discrepancy between resource holding potential (RHP) and dominance relations, from the viewpoint of individual selection.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Equine Behaviour @ team @ Serial 5102  
Permanent link to this record
 

 
Author Shettleworth, S.J. doi  openurl
  Title Taking the best for learning Type Journal Article
  Year 2005 Publication Behavioural processes Abbreviated Journal (up) Behav. Process.  
  Volume 69 Issue 2 Pages 147-9; author reply 159-63  
  Keywords *Algorithms; Animals; *Behavior, Animal; Decision Making; Evolution; *Learning; *Models, Theoretical  
  Abstract Examples of how animals learn when multiple, sometimes redundant, cues are present provide further examples not considered by Hutchinson and Gigerenzer that seem to fit the principle of taking the best. “The best” may the most valid cue in the present circumstances; evolution may also produce species-specific biases to use the most functionally relevant cues.  
  Address Department of Psychology, University of Toronto, Toronto, Ont., Canada M5S 3G3. shettle@psych.utoronto.ca  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0376-6357 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:15845301 Approved no  
  Call Number refbase @ user @ Serial 361  
Permanent link to this record
 

 
Author Chalmeau, R.; Gallo, A. url  doi
openurl 
  Title Cooperation in primates: Critical analysis of behavioural criteria Type Journal Article
  Year 1995 Publication Behavioural Processes Abbreviated Journal (up) Behav. Process.  
  Volume 35 Issue 1-3 Pages 101-111  
  Keywords Cognition; Communication; Cooperation; Evolution; Primates  
  Abstract Concerning hunting in chimpanzees, cooperation has generally been attributed to the behaviour of two or more individuals acting together to achieve a common goal (Boesch and Boesch, 1989). The common goal is often considered as the concrete result of a common action by two or several individuals. Although this result could be used as a criterion for cooperation, it could also be an outcome due to chance. We suggest that the goal, viewed as a concrete benefit shared by the partners, is not a requisite of cooperation but rather a possible consequence of a common action largely submitted to social constraints. Individuals engaged in a cooperative task in order to solve a problem have to exchange information to adjust to each other's behaviour. However, evidence of communication between partners during simultaneous cooperation is rare. An experiment in which two chimpanzees each had to simultaneously pull a handle to get a fruit was performed. We analysed not only the concrete result of the partners' activity but also what the individuals took into account before pulling a handle. We tried to specify what the chimpanzees learned by means of a series of logical propositions which we were able to confront the experimental results.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number refbase @ user @ Serial 570  
Permanent link to this record
 

 
Author Dreier, S.; van Zweden, J.S.; D'Ettorre, P. url  doi
openurl 
  Title Long-term memory of individual identity in ant queens Type Journal Article
  Year 2007 Publication Biology Letters Abbreviated Journal (up) Biol Lett  
  Volume 3 Issue 5 Pages 459-462  
  Keywords Aggression; Animals; Ants/*physiology; Conditioning, Operant; Evolution; Female; *Memory; *Recognition (Psychology); Social Dominance  
  Abstract Remembering individual identities is part of our own everyday social life. Surprisingly, this ability has recently been shown in two social insects. While paper wasps recognize each other individually through their facial markings, the ant, Pachycondyla villosa, uses chemical cues. In both species, individual recognition is adaptive since it facilitates the maintenance of stable dominance hierarchies among individuals, and thus reduces the cost of conflict within these small societies. Here, we investigated individual recognition in Pachycondyla ants by quantifying the level of aggression between pairs of familiar or unfamiliar queens over time. We show that unrelated founding queens of P. villosa and Pachycondyla inversa store information on the individual identity of other queens and can retrieve it from memory after 24h of separation. Thus, we have documented for the first time that long-term memory of individual identity is present and functional in ants. This novel finding represents an advance in our understanding of the mechanism determining the evolution of cooperation among unrelated individuals.  
  Address Institute of Biology, Department of Population Biology, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen, Denmark. sdreier@bi.ku.dk  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1744-9561 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:17594958 Approved no  
  Call Number Equine Behaviour @ team @ Serial 4649  
Permanent link to this record
 

 
Author Dunbar, R.I.M. doi  openurl
  Title Male and female brain evolution is subject to contrasting selection pressures in primates Type Journal Article
  Year 2007 Publication BMC Biology Abbreviated Journal (up) BMC Biol  
  Volume 5 Issue Pages 21  
  Keywords Animals; *Brain/physiology; *Evolution; Female; Humans; Male; *Selection (Genetics); *Sex Characteristics  
  Abstract The claim that differences in brain size across primate species has mainly been driven by the demands of sociality (the “social brain” hypothesis) is now widely accepted. Some of the evidence to support this comes from the fact that species that live in large social groups have larger brains, and in particular larger neocortices. Lindenfors and colleagues (BMC Biology 5:20) add significantly to our appreciation of this process by showing that there are striking differences between the two sexes in the social mechanisms and brain units involved. Female sociality (which is more affiliative) is related most closely to neocortex volume, but male sociality (which is more competitive and combative) is more closely related to subcortical units (notably those associated with emotional responses). Thus different brain units have responded to different selection pressures.  
  Address British Academy Centenary Research Project, School of Biological Sciences, University of Liverpool, Liverpool, UK. rimd@liv.ac.uk  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1741-7007 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:17493267 Approved no  
  Call Number Serial 2100  
Permanent link to this record
 

 
Author Hampton, R.R.; Sherry, D.F.; Shettleworth, S.J.; Khurgel, M.; Ivy, G. openurl 
  Title Hippocampal volume and food-storing behavior are related in parids Type Journal Article
  Year 1995 Publication Brain, behavior and evolution Abbreviated Journal (up) Brain Behav Evol  
  Volume 45 Issue 1 Pages 54-61  
  Keywords Animals; Appetitive Behavior/*physiology; Birds/*anatomy & histology; Brain Mapping; Evolution; Food Preferences/physiology; Hippocampus/*anatomy & histology; Mental Recall/*physiology; Orientation/*physiology; Predatory Behavior/physiology; Social Environment; Species Specificity  
  Abstract The size of the hippocampus has been previously shown to reflect species differences and sex differences in reliance on spatial memory to locate ecologically important resources, such as food and mates. Black-capped chickadees (Parus atricapillus) cached more food than did either Mexican chickadees (P. sclateri) or bridled titmice (P. wollweberi) in two tests of food storing, one conducted in an aviary and another in smaller home cages. Black-capped chickadees were also found to have a larger hippocampus, relative to the size of the telencephalon, than the other two species. Differences in the frequency of food storing behavior among the three species have probably produced differences in the use of hippocampus-dependent memory and spatial information processing to recover stored food, resulting in graded selection for size of the hippocampus.  
  Address Department of Psychology, University of Toronto, Ontario, Canada  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0006-8977 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:7866771 Approved no  
  Call Number refbase @ user @ Serial 379  
Permanent link to this record
 

 
Author Marino, L. doi  openurl
  Title Convergence of complex cognitive abilities in cetaceans and primates Type Journal Article
  Year 2002 Publication Brain, Behavior and Evolution Abbreviated Journal (up) Brain Behav Evol  
  Volume 59 Issue 1-2 Pages 21-32  
  Keywords Animal Communication; Animals; Brain/physiology; Cerebral Cortex/physiology; Cetacea/*physiology; Cognition/*physiology; *Evolution; Humans; Intelligence; Primates/*physiology  
  Abstract What examples of convergence in higher-level complex cognitive characteristics exist in the animal kingdom? In this paper I will provide evidence that convergent intelligence has occurred in two distantly related mammalian taxa. One of these is the order Cetacea (dolphins, whales and porpoises) and the other is our own order Primates, and in particular the suborder anthropoid primates (monkeys, apes, and humans). Despite a deep evolutionary divergence, adaptation to physically dissimilar environments, and very different neuroanatomical organization, some primates and cetaceans show striking convergence in social behavior, artificial 'language' comprehension, and self-recognition ability. Taken together, these findings have important implications for understanding the generality and specificity of those processes that underlie cognition in different species and the nature of the evolution of intelligence.  
  Address Neuroscience and Behavioral Biology Program, Emory University, Atlanta, Ga. 30322, USA. lmarino@emory.edu  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0006-8977 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:12097858 Approved no  
  Call Number Equine Behaviour @ team @ Serial 4158  
Permanent link to this record
 

 
Author Rogers, L.J. url  doi
openurl 
  Title Evolution of hemispheric specialization: advantages and disadvantages Type Journal Article
  Year 2000 Publication Brain and Language Abbreviated Journal (up) Brain Lang  
  Volume 73 Issue 2 Pages 236-253  
  Keywords Aggression/psychology; Animals; Behavior, Animal/physiology; Brain/*physiology; Chickens/physiology; *Evolution; Feeding Behavior/physiology; Functional Laterality/*physiology; Visual Fields/physiology; Visual Perception/physiology  
  Abstract Lateralization of the brain appeared early in evolution and many of its features appear to have been retained, possibly even in humans. We now have a considerable amount of information on the different forms of lateralization in a number of species, and the commonalities of these are discussed, but there has been relatively little investigation of the advantages of being lateralized. This article reports new findings on the differences between lateralized and nonlateralized chicks. The lateralized chicks were exposed to light for 24 h on day 19 of incubation, a treatment known to lead to lateralization of a number of visually guided responses, and the nonlateralized chicks were incubated in the dark. When they were feeding, the lateralized chicks were found to detect a stimulus resembling a raptor with shorter latency than nonlateralized chicks. This difference was not a nonspecific effect caused by the light-exposed chicks being more distressed by the stimulus. Instead, it appears to be a genuine advantage conferred by having a lateralized brain. It is suggested that having a lateralized brain allows dual attention to the tasks of feeding (right eye and left hemisphere) and vigilance for predators (left eye and right hemisphere). Nonlateralized chicks appear to perform these dual tasks less efficiently than lateralized ones. Reference is made to other species in discussing these results.  
  Address Division of Zoology, University of New England, Armidale, New South Wales, Australia. lrogers@metz.une.edu.au  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0093-934X ISBN Medium  
  Area Expedition Conference  
  Notes PMID:10856176 Approved no  
  Call Number Equine Behaviour @ team @ Serial 4621  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print