|
Gehring, T. M., VerCauteren, K. C., Provost, M. L., & Cellar, A. C. (2010). Utility of livestock-protection dogs for deterring wildlife from cattle farms. Wildl. Res., 37(8), 715–721.
Abstract: Context. Livestock producers worldwide are negatively affected by livestock losses because of predators and wildlife-transmitted diseases. In the western Great Lakes Region of the United States, this conflict has increased as grey wolf (Canis lupus) populations have recovered and white-tailed deer (Odocoileus virginianus) have served as a wildlife reservoir for bovine tuberculosis (Myobacterium bovis).Aims. We conducted field experiments on cattle farms to evaluate the effectiveness of livestock-protection dogs (LPDs) for excluding wolves, coyotes (C. latrans), white-tailed deer and mesopredators from livestock pastures.Methods. We integrated LPDs on six cattle farms (treatment) and monitored wildlife use with tracking swaths on these farms, concurrent with three control cattle farms during 2005-2008. The amount of time deer spent in livestock pastures was recorded using direct observation.Key results. Livestock pastures protected by LPDs had reduced use by these wildlife compared with control pastures not protected by LPDs. White-tailed deer spent less time in livestock pastures protected by LPDs compared with control pastures not protected by LPDs.Conclusions. Our research supports the theory that LPDs can be an effective management tool for reducing predation and disease transmission. We also demonstrate that LPDs are not limited to being used only with sheep and goats; they can also be used to protect cattle.Implications. On the basis of our findings, we support the use of LPDs as a proactive management tool that producers can implement to minimise the threat of livestock depredations and transmission of disease from wildlife to livestock. LPDs should be investigated further as a more general conservation tool for protecting valuable wildlife, such as ground-nesting birds, that use livestock pastures and are affected by predators that use these pastures.
|
|
|
Lingle, S., Rendall, D., & Pellis, S. M. (2007). Altruism and recognition in the antipredator defence of deer: 1. Species and individual variation in fawn distress calls. Anim. Behav., 73(5), 897–905.
Abstract: Mule deer, Odocoileus hemionus, females actively defend fawns against predators, including nonoffspring conspecific fawns and heterospecific white-tailed deer, O. virginianus, fawns. We hypothesized that the defence of nonoffspring fawns was due to a recognition error. During a predator attack, females may have to decide whether to defend a fawn with imperfect information on its identity obtained from hearing only a few distress calls. We examined fawn distress calls to determine whether calls made by the two species and by different individuals within each species were acoustically distinctive. The mean and maximum fundamental frequencies of mule deer fawns were nearly double those of white-tailed deer fawns, with no overlap, enabling us to classify 100% of calls to the correct species using a single trait. A large proportion of calls was also assigned to the correct individual using a multivariate analysis (66% and 70% of mule deer and white-tailed deer fawns, respectively, chance = 6% and 10%); however, there was considerable statistical uncertainty in the probability of correct classification. We observed fawns approach conspecific females in an attempt to nurse; females probed most offspring fawns with their noses before accepting them, and always probed nonoffspring fawns before rejecting them, suggesting that close contact and olfactory information were needed to unequivocally distinguish nonoffspring from offspring fawns. Taken together, these results suggest that acoustic variation alone would probably be sufficient to permit rapid and reliable species discrimination, but it may not be sufficient for mothers to unequivocally distinguish their own fawn from conspecific fawns.
|
|
|
Lingle, S., Rendall, D., Wilson, W. F., DeYoung, R. W., & Pellis, S. M. (2007). Altruism and recognition in the antipredator defence of deer: 2. Why mule deer help nonoffspring fawns. Anim. Behav., 73(5), 907–916.
Abstract: Both white-tailed deer, Odocoileus virginianus, and mule deer, O. hemionus, females defend fawns against coyotes, Canis latrans, but only mule deer defend nonoffspring conspecific and heterospecific fawns. During a predator attack, females may have to decide whether to defend a fawn while having imperfect information on its identity obtained from hearing a few distress calls. Although imperfect recognition can influence altruistic behaviour, few empirical studies have considered this point when testing functional explanations for altruism. We designed a series of playback experiments with fawn distress calls to test alternative hypotheses (by-product of parental care, kin selection, reciprocal altruism) for the mule deer's defence of nonoffspring, specifically allowing for the possibility that females mistake these fawns for their own. White-tailed deer females approached the speaker only when distress calls of white-tailed deer fawns were played and when their own fawn was hidden, suggesting that fawn defence was strictly a matter of parental care in this species. In contrast, mule deer females responded similarly and strongly, regardless of the caller's identity, the female's reproductive state (mother or nonmother) or the presence of their own offspring. The failure of mule deer females to adjust their responses to these conditions suggests that they do not defend nonoffspring because they mistake them for their own fawns. The lack of behavioural discrimination also suggests that kin selection, reciprocal altruism and defence of the offspring's area are unlikely to explain the mule deer's defence of nonoffspring. We identify causal and functional questions that still need to be addressed to understand why mule deer defend fawns so indiscriminately.
|
|
|
Taillon, J., & Côté, S. (2008). Are faecal hormone levels linked to winter progression, diet quality and social rank in young ungulates ? An experiment with white-tailed deer ( Odocoileus virginianus ) fawns. Behav. Ecol. Sociobiol., 62(10), 675–677.
Abstract: Abstract Hormones play a central role in the physiology and behaviour of animals. The recent development of noninvasive techniques has increased information on physical and social states of individuals through hormone measurements. The relationships among hormones, life history traits and behaviours are, however, still poorly known. For the first time, we evaluated natural winter glucocorticoid and testosterone levels in young ungulates in relation to winter progression, diet quality and social rank. Overwinter, levels of glucocorticoid and testosterone decreased, possibly due to the decline of fawns" body mass. The relationships between hormone levels and diet quality were surprising: Fawns fed the control diet presented higher glucocorticoid and lower testosterone levels then fawns fed the poor diet, suggesting that control fawns faced a higher nutritional stress than those on the poor diet. Similarly to other studies on social mammals, we found no relationship between faecal glucocorticoid levels and social rank, suggesting that social stress was similar for dominant and subordinate fawns during winter. Testosterone levels were not correlated to social rank as found previously in groups of individuals forming stable social hierarchies and maintaining stable dominance relationships. The simultaneous suppression of glucocorticoid and testosterone levels suggests for the first time that young ungulates present a hormonal strategy to prevent fast depletion of limited proteins and fat resources during winter.
|
|
|
Taillon, J., & Cote, S. D. (2007). Social rank and winter forage quality affect aggressiveness in white-tailed deer fawns. Anim. Behav., 74(2), 265–275.
Abstract: Achieving a high social rank may be advantageous for individuals at high population densities, because dominance status may determine the priority of access to limited resources and reduce individual loss of body mass. The establishment of dominance relationships between individuals involves variable levels of aggressiveness that can be influenced by resource availability. The relationship between social rank and aggressiveness and the impacts of resource abundance on aggressiveness are, however, poorly understood, but may be relevant to understand the mechanisms determining dominance relationships between individuals. We experimentally simulated, in seminatural enclosures, a deterioration of winter forage quality induced by a high-density deer population and examined the effects of (1) social dominance and (2) diet quality on aggressiveness, forage intake and body mass loss of white-tailed deer, Odocoileus virginianus, fawns during two winters. Within diet-quality treatments, fawns were consistently organized into linear hierarchies and showed clear dominance relationships. Dominants initiated more interactions and showed higher aggressiveness than subordinates, but subordinates had higher forage intake than dominants throughout winter. Social rank did not influence cumulative body mass loss of fawns. During both winters, fawns fed the control diet maintained their aggressiveness level, whereas fawns fed the poor-quality diet decreased it. Our experimental approach revealed that white-tailed deer responded to a reduction in winter forage quality by modifying their aggressiveness, indicating that ungulates may show plasticity not only in their foraging behaviour in response to decreased resources but also in their social behaviour.
|
|