|
Phillips, C. J. C., Oevermans, H., Syrett, K. L., Jespersen, A. Y., & Pearce, G. P. (2015). Lateralization of behavior in dairy cows in response to conspecifics and novel persons. Journal of Dairy Science, 98(4), 2389–2400.
Abstract: Abstract The right brain hemisphere, connected to the left eye, coordinates fight and flight behaviors in a wide variety of vertebrate species. We investigated whether left eye vision predominates in dairy cows’ interactions with other cows and humans, and whether dominance status affects the extent of visual lateralization. Although we found no overall lateralization of eye use to view other cows during interactions, cows that were submissive in an interaction were more likely to use their left eye to view a dominant animal. Both subordinate and older cows were more likely to use their left eye to view other cattle during interactions. Cows that predominantly used their left eye during aggressive interactions were more likely to use their left eye to view a person in unfamiliar clothing in the middle of a track by passing them on the right side. However, a person in familiar clothing was viewed predominantly with the right eye when they passed mainly on the left side. Cows predominantly using their left eyes in cow-to-cow interactions showed more overt responses to restraint in a crush compared with cows who predominantly used their right eyes during interactions (crush scores: left eye users 7.9, right eye users 6.4, standard error of the difference = 0.72). Thus, interactions between 2 cows and between cows and people were visually lateralized, with losing and subordinate cows being more likely to use their left eyes to view winning and dominant cattle and unfamiliar humans.
|
|
|
Rogers, L. (2020). Asymmetry of Motor Behavior and Sensory Perception: Which Comes First? Symmetrie, 12(5), 690.
Abstract: By examining the development of lateralization in the sensory and motor systems of the human fetus and chick embryo, this paper debates which lateralized functions develop first and what interactions may occur between the different sensory and motor systems during development. It also discusses some known influences of inputs from the environment on the development of lateralization, particularly the effects of light exposure on the development of visual and motor lateralization in chicks. The effects of light on the human fetus are related in this context. Using the chick embryo as a model to elucidate the genetic and environmental factors involved in development of lateralization, some understanding has been gained about how these lateralized functions emerge. At the same time, the value of carrying out much more research on the development of the various types of lateralization has become apparent.
|
|