|
Cioni, P., & Strambini, G. B. (1999). Pressure/temperature effects on protein flexibilty from acrylamide quenching of protein phosphorescence. Journal of Molecular Biology, 291(4), 955–964.
Abstract: Pressure is an effective modulator of protein structure and biological function. The influence of hydrostatic pressure ([less-than-or-equals, slant]3 kbar, 10-50[degree sign]C) on conformational dynamics was assessed from the rate of migration of acrylamide through the protein interior. Migration rates in apoazurin, alcohol dehydrogenase and alkaline phosphatase were obtained from the phosphorescence quenching rate constant (kq) of the deeply buried Trp residues. The dominant effect of applied pressure is to slow the diffusion process, although at low temperature, high pressure may also accelerate it. For apoazurin, alcohol dehydrogenase and alkaline phosphatase the activation free volumes, ΔVobs++, derived from the pressure-dependence of kq, ranges from +10, +16 and +20 ml mol-1 at 50[degree sign]C to -20, +5 and 0 ml mol-1 at 10[degree sign]C, respectively. Analysing ΔVobs++ in terms of a positive contribution from cavity expansion and a negative one from peptide hydration, the results emphasise that whereas at warm temperature the formation of cavities plays a dominant role in the migration process, at low temperature the required flexibility may be conferred by internal protein hydration. The relatively small magnitude of both ΔVobs++ and the activation enthalpy (ΔH++=10-20 kcal mol-1) indicates that acrylamide diffusion jumps inside these proteins appear to involve relatively small amplitude structural fluctuations not requiring major unfolding-like transitions. The implication of these findings for the thermodynamic stability of proteins under pressure is discussed.
|
|
|
Douglas Wilson, A. (2006). The effects of diet on blood glucose, insulin, gastrin and the serum tryptophan: Large neutral amino acid ratio in foals. Vet J, .
Abstract: High carbohydrate diets can affect the health and behaviour of foals, but the mechanisms are not always fully understood. The objective of this study was to compare the effects of feeding a starch and sugar (SS), or a fat (oil) and fibre (FF) rich diet to two groups of eight foals. Diets were fed from 4 to 42 weeks of age, alongside ad libitum forage. Faecal pH levels did not differ significantly between groups and endoscopic examination showed that the gastric mucosa was healthy in both groups at 25 and 42 weeks of age. At 40 weeks of age, SS foals had significantly higher total blood glucose and lower total blood gastrin than FF foals during the 6h period following ingestion of their respective diets, but insulin levels did not differ significantly. The ratio between serum tryptophan and other large neutral amino acids showed a trend towards an interaction between diet and sampling time. The results provide preliminary information about the effects of diet on the physiology of young horses.
|
|
|
Gulotta, M., Gilmanshin, R., Buscher, T. C., Callender, R. H., & Dyer, R. B. (2001). Core formation in apomyoglobin: probing the upper reaches of the folding energy landscape. Biochemistry, 40(17), 5137–5143.
Abstract: An acid-destabilized form of apomyoglobin, the so-called E state, consists of a set of heterogeneous structures that are all characterized by a stable hydrophobic core composed of 30-40 residues at the intersection of the A, G, and H helices of the protein, with little other secondary structure and no other tertiary structure. Relaxation kinetics studies were carried out to characterize the dynamics of core melting and formation in this protein. The unfolding and/or refolding response is induced by a laser-induced temperature jump between the folded and unfolded forms of E, and structural changes are monitored using the infrared amide I' absorbance at 1648-1651 cm(-1) that reports on the formation of solvent-protected, native-like helix in the core and by fluorescence emission changes from apomyoglobin's Trp14, a measure of burial of the indole group of this residue. The fluorescence kinetics data are monoexponential with a relaxation time of 14 micros. However, infrared kinetics data are best fit to a biexponential function with relaxation times of 14 and 59 micros. These relaxation times are very fast, close to the limits placed on folding reactions by diffusion. The 14 micros relaxation time is weakly temperature dependent and thus represents a pathway that is energetically downhill. The appearance of this relaxation time in both the fluorescence and infrared measurements indicates that this folding event proceeds by a concomitant formation of compact secondary and tertiary structures. The 59 micros relaxation time is much more strongly temperature dependent and has no fluorescence counterpart, indicating an activated process with a large energy barrier wherein nonspecific hydrophobic interactions between helix A and the G and H helices cause some helix burial but Trp14 remains solvent exposed. These results are best fit by a multiple-pathway kinetic model when U collapses to form the various folded core structures of E. Thus, the results suggest very robust dynamics for core formation involving multiple folding pathways and provide significant insight into the primary processes of protein folding.
|
|
|
Haruta, N., & Kitagawa, T. (2002). Time-resolved UV resonance Raman investigation of protein folding using a rapid mixer: characterization of kinetic folding intermediates of apomyoglobin. Biochemistry, 41(21), 6595–6604.
Abstract: The 244-nm excited transient UV resonance Raman spectra are observed for the refolding intermediates of horse apomyoglobin (h-apoMb) with a newly constructed mixed flow cell system, and the results are interpreted on the basis of the spectra observed for the equilibrium acid unfolding of the same protein. The dead time of mixing, which was determined with the appearance of UV Raman bands of imidazolium upon mixing of imidazole with acid, was 150 micros under the flow rate that was adopted. The pH-jump experiments of h-apoMb from pH 2.2 to 5.6 conducted with this device demonstrated the presence of three folding intermediates. On the basis of the analysis of W3 and W7 bands of Trp7 and Trp14, the first intermediate, formed before 250 micros, involved incorporation of Trp14 into the alpha-helix from a random coil. The frequency shift of the W3 band of Trp14 observed for this process was reproduced with a model peptide of the A helix when it forms the alpha-helix. In the second intermediate, formed around 1 ms after the start of refolding, the surroundings of both Trp7 and Trp14 were significantly hydrophobic, suggesting the formation of the hydrophobic core. In the third intermediate appearing around 3 ms, the hydrophobicity was relaxed to the same level as that of the pH 4 equilibrium intermediate, which was investigated in detail with the stationary state technique. The change from the third intermediate to the native state needs more time than 40 ms, while the appearance of the native spectrum after the mixing of the same solutions was confirmed separately.
|
|
|
Hothersall, B., & Nicol, C. (2009). Role of Diet and Feeding in Normal and Stereotypic Behaviors in Horses. Clinical Nutrition, 25(1), 167–181.
Abstract: This article reviews the effects of diet on equine feeding behavior and feeding patterns, before considering the evidence that diet affects reactivity in horses. A growing body of work suggests that fat- and fiber-based diets may result in calmer patterns of behavior, and possible mechanisms that may underpin these effects are discussed. In contrast, there is little evidence that herbal- or tryptophan-containing supplements influence equine behavior in any measurable way. The role of diet in the development of abnormal oral behaviors, particularly the oral stereotypy crib-biting, is also reviewed, and suggestions for future work are presented.
|
|
|
Permyakov, S. E., Khokhlova, T. I., Nazipova, A. A., Zhadan, A. P., Morozova-Roche, L. A., & Permyakov, E. A. (2006). Calcium-binding and temperature induced transitions in equine lysozyme: new insights from the pCa-temperature “phase diagrams”. Proteins, 65(4), 984–998.
Abstract: The most universal approach to the studies of metal binding properties of single-site metal binding proteins, i.e., construction of a “phase diagram” in coordinates of free metal ion concentration-temperature, has been applied to equine lysozyme (EQL). EQL has one relatively strong calcium binding site and shows two thermal transitions, but only one of them is Ca(2+)-dependent. It has been found that the Ca(2+)-dependent behavior of the low temperature thermal transition (I) of EQL can be adequately described based upon the simplest four-states scheme of metal- and temperature-induced structural changes in a protein. All thermodynamic parameters of this scheme were determined experimentally and used for construction of the EQL phase diagram in the pCa-temperature space. Comparison of the phase diagram with that for alpha-lactalbumin (alpha-LA), a close homologue of lysozyme, allows visualization of the differences in thermodynamic behavior of the two proteins. The thermal stability of apo-EQL (transition I) closely resembles that for apo-alpha-LA (mid-temperature 25 degrees C), while the thermal stabilities of their Ca(2+)-bound forms are almost indistinguishable. The native state of EQL has three orders of magnitude lower affinity for Ca(2+) in comparison with alpha-LA while its thermally unfolded state (after the I transition) has about one order lower (K = 15M(-1)) affinity for calcium. Circular dichroism studies of the apo-lysozyme state after the first thermal transition show that it shares common features with the molten globule state of alpha-LA.
|
|