|
Morgan, K., Funkquist, P., & Nyman, G. (2002). The effect of coat clipping on thermoregulation during intense exercise in trotters. Equine Veterinary Journal, 34(S34), 564–567.
Abstract: Summary The aim of this study was to study the physiological, especially thermoregulatory, responses during intense exercise in the clipped horse compared to the horse with winter coat. Six Standardbred trotters were studied before and after clipping. They performed an inclined incremental high intensity treadmill exercise test and were monitored during recovery. The clipped horse differed significantly (ANOVA) during exercise as compare to coated: less increase in central venous blood temperature, higher skin surface temperature, greater difference skin to ambient temperature and higher rate of nonevaporative heat loss. The clipped horse had significantly lower total cutaneous evaporative heat loss from walk to end of peak exercise and a shorter time for recovery for the respiratory rate using a paired t test. The clipped horse showed a tendency (P = 0.059) to decreased oxygen uptake during the stepwise increase in workload. We concluded that the clipped horse experienced less strain on the thermoregulatory system due to an enhanced heat loss. Some clipped horses in the study showed a more efficient power output; future studies with emphasis on respiration and oxygen demand are needed to explain this.
|
|
|
Myslajek, R. W., Tracz, M., Tracz, M., Tomczak, P., Szewczyk, M., Niedzwiecka, N., et al. (2018). Spatial organization in wolves Canis lupus recolonizing north-west Poland: Large territories at low population density. Mamm. Biol., 92, 37–44.
Abstract: Monitoring of the wolf Canis lupus is a demanding task as it lives in low densities, utilizes vast home ranges and disperses over large areas. These factors make obtaining accurate data about population parameters over the whole distribution area of the species impossible. Thus detailed local studies on socio-spatial organization are essential to calibrate information obtained over a larger area. We applied GPS/GSM telemetry, non-invasive genetic sampling, year-round tracking, camera trapping and howling stimulations to determine the number of family groups, population density and home-range sizes of wolves in the Drawa Forest (DF, western Poland, 2500 km2), an area recently recolonized by the species. Home ranges of three collared male wolves ranged from 321.8 to 420.6 km2 (MCP 100%) and from 187.5 to 277.5 km2 (Kernel 95%), but core areas had a size of 30.5-84.7 km2 (MCP50%) and 35.0-88.8 km2 (Kernel 50%). Mean near neighbour distance between centres of 6 tracked pack homesites was 15.3 km. The number of wolves in DF increased from 14 individuals in 2013/2014 to 30 in 2016/2017. The annual rate of increase varied from 43% in 2014/2015 to 7% in the final year. Population density for the whole study area was relatively low (1.2 indiv./100 km2 in 2016/2017), but densities within territories of two packs studied with telemetry were 1.9 and 1.5 indiv./100 km2. Mean pack size varied between 3.5 and 5.6 individuals, with the largest pack comprising 8 wolves. Mean number of pups observed in summers (June-August) was 4.5. Differences in home range sizes between wolves in western and eastern Poland indicate that results of regional studies cannot be freely extrapolated despite close genetic relationships. Thus, decisions related to management of wolf habitats should be based on intensive local studies.
|
|
|
Petter-Puchner, A. H., Froetscher, W., Krametter-Froetscher, R., Lorinson, D., Redl, H., & van Griensven, M. (2007). The long-term neurocompatibility of human fibrin sealant and equine collagen as biomatrices in experimental spinal cord injury. Exp Toxicol Pathol, 58(4), 237–245.
Abstract: INTRODUCTION: While fibrin sealant (FS) and equine collagen (EC) have been used as scaffold materials in experimental spinal cord injury (SCI), questions concerning neurocompatibility still remain. In this study, we assessed potential adverse effects, as well as functional and histological impact of FS and EC in subtotal hemisection of the thoracic spinal cord (SC) in rats. METHODS: 124 male rats were randomly assigned to four main groups (n=31): Sham (SH), Lesion only (L), fibrin sealant (GFS) and equine collagen group (GEC). SH animals received laminectomy only; all other animals underwent subtotal lateral hemisection at T9. Treatment consisted of application of FS or EC into the lesion gap in GFS and GEC, which was left empty in L. GFS, GEC, L and SH were each further divided into 4 subgroups: One subgroup, consisting of 10 rats was subjected to behavioural and reflex testing before surgery and followed up on days 1,7, 14, 21, 28 post op and then sacrificed. Haemalaun or cresyl violet (CV) was used to identify neutrophils in parasagittal cord sections which were obtained on day 1 (n=7). Sections stained for quantification of microglia/macrophages using ED-1 on day 3 (n=7), day 7 (n=7) and day 28 (n=7 out of 10). Additionally, neural filament (NF) staining was chosen to detect axonal regeneration and the length of ingrowth into FS and EC, Luxol blue for myelination, Von Willebrand factor for vascularisation, and glial fibrillary acidic protein (GFAP) staining for detection of astrocytes in glial scars on day 28. RESULTS: No adverse effects were observed in the treatment groups. Compared to L, GFS and GEC performed significantly better in the Basso, Beattie, Bresnahan (BBB) score and hopping responses. Proprioceptive placing was markedly improved in FS and EC compared to L. Axonal regrowth was found in GFS and GEC--the regrowth in the GFS was accompanied by myelination and vascularisation. Glial scarring occurred in all groups. Discussion Both biomatrices improved functional recovery compared to L and no adverse effects were perceived.
|
|