|
Bard, K. A. (2007). Neonatal imitation in chimpanzees (Pan troglodytes) tested with two paradigms. Anim. Cogn., 10(2), 233–242.
Abstract: Primate species differ in their imitative performance, perhaps reflecting differences in imitative capacity. The developmentally earliest form of imitation in humans, neonatal imitation, occurs in early interactions with social partners, and may be a more accurate index of innate capacity than imitation of actions on objects, which requires more cognitive ability. This study assessed imitative capacity in five neonatal chimpanzees, within a narrow age range (7-15 days of age), by testing responses to facial and vocal actions with two different test paradigms (structured and communicative). Imitation of mouth opening was found in both paradigms. In the communicative paradigm, significant agreement was found between infant actions and demonstrations. Additionally, chimpanzees matched the sequence of three actions of the TC model, but only on the second demonstration. Newborn chimpanzees matched more modeled actions in the communicative test than in the structured paradigm. These performances of chimpanzees, at birth, are in agreement with the literature, supporting a conclusion that imitative capacity is not unique to the human species. Developmental histories must be more fully considered in the cross-species study of imitation, as there is a greater degree of innate imitative capacity than previously known. Socialization practices interact with innate and developing competencies to determine the outcome of imitation tests later in life.
|
|
|
Beckers, T., Miller, R. R., De Houwer, J., & Urushihara, K. (2006). Reasoning rats: forward blocking in Pavlovian animal conditioning is sensitive to constraints of causal inference. J Exp Psychol Gen, 135(1), 92–102.
Abstract: Forward blocking is one of the best-documented phenomena in Pavlovian animal conditioning. According to contemporary associative learning theories, forward blocking arises directly from the hardwired basic learning rules that govern the acquisition or expression of associations. Contrary to this view, here the authors demonstrate that blocking in rats is flexible and sensitive to constraints of causal inference, such as violation of additivity and ceiling considerations. This suggests that complex cognitive processes akin to causal inferential reasoning are involved in a well-established Pavlovian animal conditioning phenomenon commonly attributed to the operation of basic associative processes.
|
|
|
Benson-Amram, S., Weldele, M. L., & Holekamp, K. E. (2013). A comparison of innovative problem-solving abilities between wild and captive spotted hyaenas, Crocuta crocuta. Animal Behaviour, 85(2), 349–356.
Abstract: Innovative problem solving enables individuals to deal with novel social and ecological challenges. However, our understanding of the importance of innovation for animals in their natural habitat is limited because experimental investigations of innovation have historically focused on captive animals. To determine how captivity affects innovation, and whether captive studies of animal innovation suffer from low external validity, we need experimental investigations of innovation in both wild and captive populations of the same species in diverse taxa. Here we inquired whether wild and captive spotted hyaenas differ in their ability to solve the same novel technical problem, and in the diversity of exploratory behaviours they exhibit when first interacting with the problem. Our results suggest that wild and captive populations show important differences in their innovative problem-solving abilities. Captive hyaenas were significantly more successful at solving the novel problem, and significantly more diverse in their initial exploratory behaviour, than were wild hyaenas. We were able to rule out hypotheses suggesting that these differences result from excess energy or time available to captive animals. We conclude that captive hyaenas were more successful because captive individuals were less neophobic and more exploratory than their wild counterparts. These results have important implications for our interpretation of studies on innovative problem solving in captive animals and aid our attempts to gain a broader understanding of the importance of innovation for animals in their natural habitat.
|
|
|
Birch, H. G. (1945). The relation of previous experience to insightful problem-solving. J Comp Psychol, 38, 367–383.
|
|
|
Blaisdell, A. P., & Cook, R. G. (2005). Integration of spatial maps in pigeons. Anim. Cogn., 8(1), 7–16.
Abstract: The integration of spatial maps in pigeons was investigated using a spatial analog to sensory preconditioning. The pigeons were tested in an open-field arena in which they had to locate hidden food among a 4x4 grid of gravel-filled cups. In phase 1, the pigeons were exposed to a consistent spatial relationship (vector) between landmark L (a red L-shaped block of wood), landmark T (a blue T-shaped block of wood) and the hidden food goal. In phase 2, the pigeons were then exposed to landmark T with a different spatial vector to the hidden food goal. Following phase 2, pigeons were tested with trials on which they were presented with only landmark L to examine the potential integration of the phase 1 and 2 vectors via their shared common elements. When these test trials were preceded by phase 1 and phase 2 reminder trials, pigeons searched for the goal most often at a location consistent with their integration of the L-->T phase 1 and T-->phase 2 goal vectors. This result indicates that integration of spatial vectors acquired during phases 1 and 2 allowed the pigeons to compute a novel L-->goal vector. This suggests that spatial maps may be enlarged by successively integrating additional spatial information through the linkage of common elements.
|
|
|
Bouchard, J., Goodyer, W., & Lefebvre, L. (2007). Social learning and innovation are positively correlated in pigeons (Columba livia). Anim. Cogn., 10(2), 259–266.
Abstract: When animals show both frequent innovation and fast social learning, new behaviours can spread more rapidly through populations and potentially increase rates of natural selection and speciation, as proposed by A.C. Wilson in his behavioural drive hypothesis. Comparative work on primates suggests that more innovative species also show more social learning. In this study, we look at intra-specific variation in innovation and social learning in captive wild-caught pigeons. Performances on an innovative problem-solving task and a social learning task are positively correlated in 42 individuals. The correlation remains significant when the effects of neophobia on the two abilities are removed. Neither sex nor dominance rank are associated with performance on the two tasks. Free-flying flocks of urban pigeons are able to solve the innovative food-finding problem used on captive birds, demonstrating it is within the range of their natural capacities. Taken together with the comparative literature, the positive correlation between innovation and social learning suggests that the two abilities are not traded-off.
|
|
|
Bovet, D., Vauclair, J., & Blaye, A. (2005). Categorization and abstraction abilities in 3-year-old children: a comparison with monkey data. Anim. Cogn., 8(1), 53–59.
Abstract: Three-year-old children were tested on three categorization tasks of increasing levels of abstraction (used with adult baboons in an earlier study): the first was a conceptual categorization task (food vs toys), the second a perceptual matching task (same vs different objects), and the third a relational matching task in which the children had to sort pairs according to whether or not the two items belonged to the same or different categories. The children were tested using two different procedures, the first a replication of the procedure used with the baboons (pulling one rope for a category or a relationship between two objects, and another rope for the other category or relationship), the second a task based upon children's prior experiences with sorting objects (putting in the same box objects belonging to the same category or a pair of objects exemplifying the same relation). The children were able to solve the first task (conceptual categorization) when tested with the sorting into boxes procedure, and the second task (perceptual matching) when tested with both procedures. The children were able to master the third task (relational matching) only when the rules were clearly explained to them, but not when they could only watch sorting examples. In fact, the relational matching task without explanation requires analogy abilities that do not seem to be fully developed at 3 years of age. The discrepancies in performances between children tested with the two procedures, with the task explained or not, and the discrepancies observed between children and baboons are discussed in relation to differences between species and/or problem-solving strategies.
|
|
|
Brodbeck, D. R. (1997). Picture fragment completion: priming in the pigeon. J Exp Psychol Anim Behav Process, 23(4), 461–468.
Abstract: It has been suggested that the system behind implicit memory in humans is evolutionarily old and that animals should readily show priming. In Experiment 1, a picture fragment completion test was used to test priming in pigeons. After pecking a warning stimulus, pigeons were shown 2 partially obscured pictures from different categories and were always reinforced for choosing a picture from one of the categories. On control trials, the warning stimulus was a picture of some object (not from the S+ or S- category), on study trials the warning stimulus was a picture to be categorized on the next trial, and on test trials the warning stimulus was a randomly chosen picture and the S+ picture was the warning stimulus seen on the previous trial. Categorization was better on study and test trials than on control trials. Experiment 2 ruled out the possibility that the priming effect was caused by the pigeons' responding to familiarity by using warning stimuli from both S+ and S- categories. Experiment 3 investigated the time course of the priming effect.
|
|
|
Call, J. (2006). Inferences by exclusion in the great apes: the effect of age and species. Anim. Cogn., 9(4), 393–403.
Abstract: This study investigated the ability of chimpanzees, gorillas, orangutans, and bonobos to make inferences by exclusion using the procedure pioneered by Premack and Premack (Cognition 50:347-362, 1994) with chimpanzees. Thirty apes were presented with two different food items (banana vs. grape) on a platform and covered with identical containers. One of the items was removed from the container and placed between the two containers so that subjects could see it. After discarding this item, subjects could select between the two containers. In Experiment 1, apes preferentially selected the container that held the item that the experimenter had not discarded, especially if subjects saw the experimenter remove the item from the container (but without seeing the container empty). Experiment 3 in which the food was removed from one of the containers behind a barrier confirmed these results. In contrast, subjects performed at chance levels when a stimulus (colored plastic chip: Exp. 1; food item: Exp. 2 and Exp. 3) designated the item that had been removed. These results indicated that apes made inferences, not just learned to use a discriminative cue to avoid the empty container. Apes perceived and treated the item discarded by the experimenter as if it were the very one that had been hidden under the container. Results suggested a positive relationship between age and inferential ability independent of memory ability but no species differences.
|
|
|
Call, J., & Tomasello, M. (1995). Use of social information in the problem solving of orangutans (<em>Pongo pygmaeus</em>) and human children (<em>Homo sapiens</em>). J. Comp. Psychol., 109(3), 308–320.
Abstract: Fourteen juvenile and adult orangutans and 24 3- and 4-yr-old children participated in 4 studies on imitative learning in a problem-solving situation. In all studies a simple to operate apparatus was used, but its internal mechanism was hidden from subjects to prevent individual learning. In the 1st study, orangutans observed a human demonstrator perform 1 of 4 actions on the apparatus and obtain a reward; they subsequently showed no signs of imitative learning. Similar results were obtained in a 2nd study in which orangutan demonstrators were used. Similar results were also obtained in a 3rd study in which a human encouraged imitation from an orangutan that had previously been taught to mimic arbitrary human actions. In a 4th study, human 3- and 4-yr-old children learned the task by means of imitation. (PsycINFO Database Record (c) 2010 APA, all rights reserved)
|
|