|
Arnold, W., Ruf, T., & Kuntz, R. (2006). Seasonal adjustment of energy budget in a large wild mammal, the Przewalski horse (Equus ferus przewalskii) II. Energy expenditure. J Exp Biol, 209(Pt 22), 4566–4573.
Abstract: Many large mammals show pronounced seasonal fluctuations of metabolic rate (MR). It has been argued, based on studies in ruminants, that this variation merely results from different levels of locomotor activity (LA), and heat increment of feeding (HI). However, a recent study in red deer (Cervus elaphus) identified a previously unknown mechanism in ungulates--nocturnal hypometabolism--that contributed significantly to reduced energy expenditure, mainly during late winter. The relative contribution of these different mechanisms to seasonal adjustments of MR is still unknown, however. Therefore, in the study presented here we quantified for the first time the independent contribution of thermoregulation, LA and HI to heart rate (f(H)) as a measure of MR in a free-roaming large ungulate, the Przewalski horse or Takhi (Equus ferus przewalskii Poljakow). f(H) varied periodically throughout the year with a twofold increase from a mean of 44 beats min(-1) during December and January to a spring peak of 89 beats min(-1) at the beginning of May. LA increased from 23% per day during December and January to a mean level of 53% per day during May, and declined again thereafter. Daily mean subcutaneous body temperature (T(s)) declined continuously during winter and reached a nadir at the beginning of April (annual range was 5.8 degrees C), well after the annual low of air temperature and LA. Lower T(s) during winter contributed considerably to the reduction in f(H). In addition to thermoregulation, f(H) was affected by reproduction, LA, HI and unexplained seasonal variation, presumably reflecting to some degree changes in organ mass. The observed phase relations of seasonal changes indicate that energy expenditure was not a consequence of energy uptake but is under endogenous control, preparing the organism well in advance of seasonal energetic demands.
|
|
|
Bartosova, J., Komarkova, M., Dubcova, J., Bartos, L., & Pluhacek J. (2012). Nursing behaviour in pregnant domestic mares (Equus caballus): Can they cope with dual maternal investment? In K. Krueger (Ed.), Proceedings of the 2. International Equine Science Meeting (Vol. in press). Wald: Xenophon Publishing.
Abstract: Among mammals, lactation is the most energy demanding part of parental care and so parentoffspring conflict should arise over milk provided by the mother. Mother and offspring should disagree over the length and amount of the milk provision. We focused on effect of pregnancy on suckling behaviour variables as indicators of mother-offspring conflict in domestic horses. We presumed shorter suckling bouts and higher rates of rejected and/or terminated suckling in pregnant mares compared to non-pregnant ones. Increasing conflict over amount of maternal investment between mother and her young are to be expected because of her parallel investment into a nursed foal and a foetus. Eight groups of loose housed lactating mares with foals of Kladruby horse were studied at the National Stud Kladruby nad Labem (Czech Republic) from deliveries to abrupt weaning (at the age of 127 to 210 days). We recorded 10 848 suckling solicitations of 79 mare-foal pairs, from which 10 607 resulted in a suckling bout. In 41 cases a nursing mare became pregnant during lactation. We found no significant effect of pregnancy either on probability of the mother rejecting suckling solicitation of her foal or probability that she terminated a suckling bout. However the overall effect of mother’s pregnancy on suckling bout duration was not significant, there were considerable differences in pregnant and non-pregnant mares according to who terminated a suckling bout, whether the mother or the foal (F(1, 9776) = 12.1, P < 0.001). In case it was the mother then the suckling bout was longer if she was pregnant (65.36 ± 1.25 s) than barren (60.55 ± 1.36 s). We found no impact of pregnancy on duration of suckling bouts terminated by the foal. Further, nursing a foal during the first two trimesters of pregnancy had no negative impact on birth weight of the foetus. In conclusion, we found not higher, but a lower mother-offspring conflict in pregnant than in non-pregnant lactating mares while expecting just the opposite. We suggest that pregnant mares compensate their nursed foals during intensive stages of lactation through a relaxed mother-offspring conflict for later decrease in investment due to increasing demands of the foetus and/or for the shorter period of milk supply. Our results (partly published in Bartosova et al. 2011, PLoS ONE 6(8): e22068) are of high importance in horse breeding. One of the main arguments for early weaning of the foals is regeneration of their pregnant mothers before upcoming delivery. Here we present evidence that a pregnant mare “counts” with her dual maternal investment and “employs” evolutionary mechanisms enabling her to rear a vital foetus. From this point of view there is no objective reason for stressful weaning of her nursed offspring practised in conventional breeding. Supported by AWIN, EU FP7 project No. 266213.
|
|
|
Belonje, P. C., & van Niekerk, C. H. (1975). A review of the influence of nutrition upon the oestrous cycle and early pregnancy in the mare. J Reprod Fertil Suppl, (23), 167–169.
Abstract: Attention is drawn to the beneficial effect of improved nutrition during winter and early spring on the ovarian activity of mares. Furthermore, the necessity of an adequate plane of nutrition during early pregnancy to prevent embryonic resorption is stressed.
|
|
|
Berger, J. (1983). Induced abortion and social factors in wild horses. Nature, 303(5912), 59–61.
Abstract: Much evidence now suggests that the postnatal killing of young in primates and carnivores, and induced abortions in some rodents, are evolved traits exerting strong selective pressures on adult male and female behaviour. Among ungulates it is perplexing that either no species have developed convergent tactics or that these behaviours are not reported, especially as ungulates have social systems similar to those of members of the above groups. Only in captive horses (Equus caballus) has infant killing been reported. It has been estimated that 40,000 wild horses live in remote areas of the Great Basin Desert of North America (US Department of Interior (Bureau of Land Management), unpublished report), where they occur in harems (females and young) defended by males. Here I present evidence that, rather than killing infants directly, invading males induce abortions in females unprotected by their resident stallions and these females are then inseminated by the new males.
|
|
|
Boyd, L. (1986). Behavior problems of equids in zoos. Vet Clin North Am Equine Pract, 2(3), 653–664.
Abstract: Behavior problems in zoo equids commonly result from a failure to provide for needs basic to equine nature. Equids are gregarious, and failure to provide companions may result in pacing. Wild equids spend 60 to 70 per cent of their time grazing, and failure to provide ad libitum roughage contributes to the problems of pacing, cribbing, wood chewing, and coprophagia. Mimicking the normal processes of juvenile dispersal, bachelor-herd formation, and mate acquisition reduces the likelihood of agonistic and reproductive behavior problems. Infanticide can be avoided by introducing new stallions to herds containing only nonpregnant mares and older foals.
|
|
|
Brennan, P. A. (2004). The nose knows who's who: chemosensory individuality and mate recognition in mice. Horm Behav, 46(3), 231–240.
Abstract: Individual recognition is an important component of behaviors, such as mate choice and maternal bonding that are vital for reproductive success. This article highlights recent developments in our understanding of the chemosensory cues and the neural pathways involved in individuality discrimination in rodents. There appear to be several types of chemosensory signal of individuality that are influenced by the highly polymorphic families of major histocompatibility complex (MHC) proteins or major urinary proteins (MUPs). Both have the capability of binding small molecules and may influence the individual profile of these chemosignals in biological fluids such as urine, skin secretions, or saliva. Moreover, these proteins, or peptides associated with them, can be taken up into the vomeronasal organ (VNO) where they can potentially interact directly with the vomeronasal receptors. This is particularly interesting given the expression of major histocompatibility complex Ib proteins by the V2R class of vomeronasal receptor and the highly selective responses of accessory olfactory bulb (AOB) mitral cells to strain identity. These findings are consistent with the role of the vomeronasal system in mediating individual discrimination that allows mate recognition in the context of the pregnancy block effect. This is hypothesized to involve a selective increase in the inhibitory control of mitral cells in the accessory olfactory bulb at the first level of processing of the vomeronasal stimulus.
|
|
|
Brennan, P. A., & Kendrick, K. M. (2006). Mammalian social odours: attraction and individual recognition. Phil. Trans. Biol. Sci., 361(1476), 2061–2078.
Abstract: Mammalian social systems rely on signals passed between individuals conveying information including sex, reproductive status, individual identity, ownership, competitive ability and health status. Many of these signals take the form of complex mixtures of molecules sensed by chemosensory systems and have important influences on a variety of behaviours that are vital for reproductive success, such as parent-offspring attachment, mate choice and territorial marking. This article aims to review the nature of these chemosensory cues and the neural pathways mediating their physiological and behavioural effects. Despite the complexities of mammalian societies, there are instances where single molecules can act as classical pheromones attracting interest and approach behaviour. Chemosignals with relatively high volatility can be used to signal at a distance and are sensed by the main olfactory system. Most mammals also possess a vomeronasal system, which is specialized to detect relatively non-volatile chemosensory cues following direct contact. Single attractant molecules are sensed by highly specific receptors using a labelled line pathway. These act alongside more complex mixtures of signals that are required to signal individual identity. There are multiple sources of such individuality chemosignals, based on the highly polymorphic genes of the major histocompatibility complex (MHC) or lipocalins such as the mouse major urinary proteins. The individual profile of volatile components that make up an individual odour signature can be sensed by the main olfactory system, as the pattern of activity across an array of broadly tuned receptor types. In addition, the vomeronasal system can respond highly selectively to non-volatile peptide ligands associated with the MHC, acting at the V2r class of vomeronasal receptor.The ability to recognize individuals or their genetic relatedness plays an important role in mammalian social behaviour. Thus robust systems for olfactory learning and recognition of chemosensory individuality have evolved, often associated with major life events, such as mating, parturition or neonatal development. These forms of learning share common features, such as increased noradrenaline evoked by somatosensory stimulation, which results in neural changes at the level of the olfactory bulb. In the main olfactory bulb, these changes are likely to refine the pattern of activity in response to the learned odour, enhancing its discrimination from those of similar odours. In the accessory olfactory bulb, memory formation is hypothesized to involve a selective inhibition, which disrupts the transmission of the learned chemosignal from the mating male. Information from the main olfactory and vomeronasal systems is integrated at the level of the corticomedial amygdala, which forms the most important pathway by which social odours mediate their behavioural and physiological effects. Recent evidence suggests that this region may also play an important role in the learning and recognition of social chemosignals.
|
|
|
Collery, L. (1974). Observations of equine animals under farm and feral conditions. Equine Vet J, 6(4), 170–173.
|
|
|
Crowell-Davis, S. L., & Houpt, K. A. (1986). Maternal behavior. Vet Clin North Am Equine Pract, 2(3), 557–571.
Abstract: Parturition in mares is rapid and is followed by a brief period of sensitivity to imprinting on a foal. There is large individual variation in normal maternal style, but normal mothers actively defend their foal, remain near the foal when it is sleeping, tolerate or assist nursing, and do not injure their own foal. Disturbance of a mare and foal during the early imprinting period can predispose a mare to rejection of her foal; therefore, it should be avoided. There are a variety of forms of foal rejection and numerous etiologies. Therefore, each case should be evaluated individually.
|
|
|
De Boyer Des Roches, A., Richard-Yris, M. - A., Henry, S., Ezzaouia, M., & Hausberger, M. (2008). Laterality and emotions: visual laterality in the domestic horse (Equus caballus) differs with objects' emotional value. Physiol. Behav., 94(3), 487–490.
Abstract: Lateralization of emotions has received great attention in the last decades, both in humans and animals, but little interest has been given to side bias in perceptual processing. Here, we investigated the influence of the emotional valence of stimuli on visual and olfactory explorations by horses, a large mammalian species with two large monocular visual fields and almost complete decussation of optic fibres. We confronted 38 Arab mares to three objects with either a positive, negative or neutral emotional valence (novel object). The results revealed a gradient of exploration of the 3 objects according to their emotional value and a clear asymmetry in visual exploration. When exploring the novel object, mares used preferentially their right eyes, while they showed a slight tendency to use their left eyes for the negative object. No asymmetry was evidenced for the object with the positive valence. A trend for an asymmetry in olfactory investigation was also observed. Our data confirm the role of the left hemisphere in assessing novelty in horses like in many vertebrate species and the possible role of the right hemisphere in processing negative emotional responses. Our findings also suggest the importance of both hemispheres in the processing positive emotions. This study is, to our knowledge, the first to demonstrate clearly that the emotional valence of a stimulus induces a specific visual lateralization pattern.
|
|