|
Beck, B. B. (1982). Chimpocentrism: Bias in cognitive ethology. Journal of Human Evolution, 11(1), 3–17.
Abstract: Herring gulls drop hard-shelled mollusks and hermit crab-inhabited molluskan prey in order to break the shells and gain access to the edible interior. A field study of predatory shell dropping on Cape Cod, Massachusetts, U.S.A. showed that the gulls usually drop the same shell repeatedly, orient directly to dropping sites that are invisible from the point at which the mollusks are captured, drop preferentially on hard surfaces, adjust dropping heights to suit the area and elasticity of the substrate, orient directly into the wind while dropping, sever the large defensive cheliped of hermit crabs before consumption, and rinse prey that is difficult to swallow. Proficiency in prey dropping is acquired through dropping objects in play, trial-and-error learning, and perhaps, observation learning.
Observable attributes of predatory shell-dropping support inferences that the gulls are capable of extended concentration, purposefulness, mental representation of spatially and temporally displaced environmental features, cognitive mapping, cognitive modeling, selectivity, and strategy formation. Identical cognitive processes have been inferred to underlie the most sophisticated forms of chimpanzee tool-use.
Advanced cognitive capacities are not restricted to chimpanzees and other pongids, and are not associated uniquely with tool use. The chimpocentric bias should be abandoned, and reconstructions of the evolution of intelligence should be modified accordingly.
|
|
|
Bruns, A., Waltert, M., & Khorozyan, I. (2020). The effectiveness of livestock protection measures against wolves (Canis lupus) and implications for their co-existence with humans. Global Ecology and Conservation, 21, e00868.
Abstract: Wolves (Canis lupus) can kill domestic livestock resulting in intense conflicts with humans. Damage to livestock should be reduced to facilitate human-wolf coexistence and ensure positive outcomes of conservation efforts. Current knowledge on the effectiveness of livestock protection measures from wolves is limited and scattered in the literature. In this study, we compiled a dataset of 30 cases describing the application of 11 measures of protecting cattle and smaller livestock against wolves, estimated their effectiveness as a relative risk of damage, and identified the best measures for damage reduction. We found that: (1) lethal control and translocation were less effective than other measures, (2) deterrents, especially fladry which is a fence with ropes marked by hanging colored flags that sway in the wind and provide a visual warning signal, were more effective than guarding dogs; (3) deterrents, fencing, calving control and herding were very effective, but the last two measures included only one case each; and (4) protection of cattle was more effective than that of small stock (sheep and goats, or sheep only) and mixed cattle and small stock. In all of these cases, the relative risk of damage was reduced by 50-100%. Considering Germany as an example of a country with a recovering wolf population and escalating human-wolf conflicts, we suggest electric fences and electrified fladry as the most promising measures, which under suitable conditions can be accompanied by well-trained livestock guarding dogs, and the temporary use of deterrents during critical periods such as calving and lambing seasons. Further research in this field is of paramount importance to efficiently mitigate human-wolf conflicts.
|
|
|
Dugatkin, L. A., & Godin, G. J. (1992). Predator inspection, shoaling and foraging under predation hazard in the Trinidadian guppy,Poecilia reticulata. Environmental Biology of Fishes, 34(3), 265–276.
Abstract: Guppies,Poecilia reticulata, living in stream pools in Trinidad, West Indies, approached a potential fish predator (a cichlid fish model) in a tentative, saltatory manner, mainly as singletons or in pairs. Such behavior is referred to as predator inspection behavior. Inspectors approached the trunk and tail of the predator model more frequently, more closely and in larger groups than they approached the predator's head, which is presumably the most dangerous area around the predator. However, guppies were not observed in significantly larger shoals in the stream when the predator model was present. In a stream enclosure, guppies inspected the predator model more frequently when it was stationary compared to when it was moving, and made closer inspections to the posterior regions of the predator than to its head. Therefore, the guppies apparently regarded the predator model as a potential threat and modified their behavior accordingly when inspecting it. Guppies exhibited a lower feeding rate in the presence of the predator, suggesting a trade-off between foraging gains and safety against predation. Our results further suggest that predator inspection behavior may account for some of this reduction in foraging. These findings are discussed in the context of the benefits and costs of predator inspection behavior.
|
|
|
Griffin, A. S. (2008). Socially acquired predator avoidance: Is it just classical conditioning? Special Issue:Brain Mechanisms, Cognition and Behaviour in Birds, 76(3), 264–271.
Abstract: Associative learning theories presume the existence of a general purpose learning process, the structure of which does not mirror the demands of any particular learning problem. In contrast, learning scientists working within an Evolutionary Biology tradition believe that learning processes have been shaped by ecological demands. One potential means of exploring how ecology may have modified properties of acquisition is to use associative learning theory as a framework within which to analyse a particular learning phenomenon. Recent work has used this approach to examine whether socially transmitted predator avoidance can be conceptualised as a classical conditioning process in which a novel predator stimulus acts as a conditioned stimulus (CS) and acquires control over an avoidance response after it has become associated with alarm signals of social companions, the unconditioned stimulus (US). I review here a series of studies examining the effect of CS/US presentation timing on the likelihood of acquisition. Results suggest that socially acquired predator avoidance may be less sensitive to forward relationships than traditional classical conditioning paradigms. I make the case that socially acquired predator avoidance is an exciting novel one-trial learning paradigm that could be studied along side fear conditioning. Comparisons between social and non-social learning of danger at both the behavioural and neural level may yield a better understanding of how ecology might shape properties and mechanisms of learning.
|
|
|
Pimenta, V., Barroso, I., Boitani, L., & Beja, P. (2018). Risks a la carte: Modelling the occurrence and intensity of wolf predation on multiple livestock species. Biol. Conserva., 228, 331–342.
Abstract: Predation on livestock is a source of human-wildlife conflicts and can undermine the conservation of large carnivores. To design effective mitigation strategies, it is important to understand the determinants of predation across livestock species, which often differ in husbandry practices, vulnerability to predators and economic value. Moreover, attention should be given to both predation occurrence and intensity, because these can have different spatial patterns and predictors. We used spatial risk modelling to quantify factors affecting wolf predation on five livestock species in Portugal. Within the 1619 parishes encompassing the entire wolf range in the country, the national wolf compensation scheme recorded 17,670 predation events in 2009-2015, each involving one or more livestock species: sheep (31.7%), cattle (27.7%), goats (26.8%), horses (14.8%) and donkeys (3.2%). Models built with 2009-2013 data and validated with 2014-2015 data, showed a shared general pattern of predation probability on each species increasing with its own density and proximity to wolf packs. For some species there were positive relations with the density of other livestock species, and with habitat variables such as altitude, and land cover by shrubland and natural pastures. There was also a general pattern for predation intensity on each species increasing with its own density, while proximity to wolf packs had no significant effects. Predation intensity on goats, cattle and horses increased with the use of communal versus private pastures. Our results suggest that although predation may occur wherever wolves coexist with livestock species, high predation intensity is mainly restricted to particular areas where husbandry practices increase the vulnerability of animals, and this is where mitigation efforts should concentrate.
|
|
|
Reluga, T. C., & Viscido, S. (2005). Simulated evolution of selfish herd behavior. J. Theor. Biol., 234(2), 213–225.
Abstract: Single species aggregations are a commonly observed phenomenon. One potential explanation for these aggregations is provided by the selfish herd hypothesis, which states that aggregations result from individual efforts to reduce personnel predation risk at the expense of group-mates. Not all movement rules based on the selfish herd hypothesis are consistent with observed animal behavior. Previous work has shown that herd-like aggregations are not generated by movement rules limited to local interactions between nearest neighbors. Instead, rules generating realistic herds appear to require delocalized interactions. To date, it has been an open question whether or not the necessary delocalization can emerge from local interactions under natural selection. To address this question, we study an individual-based model with a single quantitative genetic trait that controls the influence of neighbors as a function of distance. The results indicate that predation-based selection can increase the influence of distant neighbors relative to near neighbors. Our results lend support for the idea that selfish herd behavior can arise from localized movement rules under natural selection.
|
|