|
Assersohn, C., Whiten, A., Kiwede, Z. T., Tinka, J., & Karamagi, J. (2004). Use of leaves to inspect ectoparasites in wild chimpanzees: a third cultural variant? Primates, 45(4), 255–258.
Abstract: We report 26 cases of using leaves as tools with which wild chimpanzees (Pan troglodytes schweinfurthii) in the Sonso community, Budongo Forest, Uganda, appeared to inspect objects removed during grooming. Careful removal of potential ectoparasites and delicate lip or manual placement on leaves followed by intense visual examination characterised this behaviour. It appears to be done to judge whether either ingestion or discarding is most appropriate, the former occurring in most cases. This behaviour may represent a third variant of ectoparasite handling, different from those described at Tai and Gombe, yet sharing features with the latter. These two East African techniques may thus have evolved from leaf grooming.
|
|
|
Bahman, M. (2012). The prevalence of parascaris equorum in Tehran's riding clubs. In K. Krueger (Ed.), Proceedings of the 2. International Equine Science Meeting (Vol. in press). Wald: Xenophon Publishing.
Abstract: Parascaris equorum (ascarid; roundworm) is a common nematode parasite which occurs in the small intestine of immature horses world-wide. Adult female ascarids lay eggs in the small intestine, and these eggs pass into the environment within the feces of the host. P. equorum is one of the rare nematodes which induce absolute acquired immunity. Most horses become immune during the first year of life, so patent ascarid infections are rarely diagnosed in horses over two years of age. The aim of this study was to determine the prevalence of infection with parascaris equorum in Tehran’s riding clubs. The prevalence and rate of infection was determined based on the coproscopic examination. Fecal samples were tested for the presence of parascaris using suspend method. In this investigation, 442 fecal samples of horses from North-East of Tehran’s riding clubs examined. From the viewpoint of parascaris roundworms, fecal samples were obtained from each box separately and send in containers with plastic lid. The samples were then transferred to the parasitology lab for further examination. The infection was recognized based on the observation of parascaris eggs in coproscopic examination. The infection rate in the foal in this study was zero percent. Another interesting result was increasing the infection rate in horses of 10 years or even older and gelding. Out of 442 samples, the infection rate in the samples taken in summer, was 3.16%, and in the fall, winter and spring it was 2.4%, 10% and 3.16% respectively. The infection rates in relation to the age, sex, excursion condition, seasons and deworming programs was studied too. The results showed that the local and the imported horses should be monitored parasitologically, because endoparasites may create a major epizootiolocall problem when these animals are kept in an organic raising system. Deworming program is to be continued with proper methodology, dose and throughout the productive age of the horses.
|
|
|
Barros, A. T. (2001). Seasonality and relative abundance of Tabanidae (Diptera) captured on horses in the Pantanal, Brazil. Mem Inst Oswaldo Cruz, 96(7), 917–923.
Abstract: Once a month, from June 1992 to May 1993, collections of tabanids on horse were conducted in the Nhecolandia, Pantanal State of Mato Grosso do Sul, Brazil. Tabanid catches using hand nets were conducted from sunrise to sunset at grassland and cerradao (dense savanna) habitats. A total of 3,442 tabanids from 21 species,12 genera, and 3 subfamilies were collected. Although species abundance varied seasonally depending on habitat, no habitat specificity was observed for the most abundant species. In the grassland, 1,625 (47.2%) tabanids belonging to 19 species were collected, while 1,817 (52.8%) tabanids from 17 species were caught in the cerradao. The number of tabanid species varied from 7 during winter (July/August) to 15 in the spring (October). Tabanus importunus (56%) was the most abundant species, followed by T. occidentalis (8.2%), and T. claripennis (8.1%). The tabanid peak, in October, coincided with the beginning of the rainy season. The population peak of most species, including those with higher vector potential, suggests that the rainy season can be considered as the period of potentially higher risk of mechanical transmission of pathogens by tabanids to horses in the region.
|
|
|
Boucher, J. M., Hanosset, R., Augot, D., Bart, J. M., Morand, M., Piarroux, R., et al. (2005). Detection of Echinococcus multilocularis in wild boars in France using PCR techniques against larval form. Vet Parasitol, 129(3-4), 259–266.
Abstract: Recently, new data have been collected on the distribution and ecology of Echinococcus multilocularis in European countries. Different ungulates species such as pig, goat, sheep, cattle and horse are known to host incomplete development of larval E. multilocularis. We report a case of E. multilocularis portage in two wild boars from a high endemic area in France (Department of Jura). Histological examination was performed and the DNA was isolated from hepatic lesions then amplified by using three PCR methods in two distinct institutes. Molecular characterisation of PCR products revealed 99% nucleotide sequence homology with the specific sequence of the U1 sn RNA gene of E. multilocularis, 99 and 99.9% nucleotide sequence homology with the specific sequence of the cytochrome oxydase gene of Echinococcus genus and 99.9% nucleotide sequence homology with a genomic DNA sequence of Echinococcus genus for the first and the second wild boar, respectively.
|
|
|
Dvoinos, G. M., Kharchenko, V. A., & Zviagnitsova, N. S. (1992). The characteristics of the helminth community in the Turkmen kulan (Equus hemionus). Parazitologiia, 26(3), 246–251.
Abstract: The helminth fauna of 24 kulans from Askaniya-Nova and Badkhyz was studied. 42 species of helminths were found, 34 of which belong to strongylids. The helminth species composition of kulan is similar to that of other species of horses. This is a result of an intensive parasite exchange in the historical past when numerous populations of different Equidae species made long seasonal migrations over steppe inter-river lands of Asia and grazed for some time on common pastures.
|
|
|
Enileeva, N. K. (1987). [Ecological characteristics of horse stomach botflies in Uzbekistan]. Parazitologiia, 21(4), 577–579.
Abstract: The paper describes the flight periods and dynamics of abundance of horse botflies, life span of females and males, effect of environmental factors on the activity of flies and their behaviour, potential fecundity of different species of botflies, duration of embryonal development, preservation of viability of larvae in egg membranes, localization of different stages of botflies in the host, and methods of their control.
|
|
|
Fortes, A. F., Merchant, H., & Georgopoulos, A. P. (2004). Comparative and categorical spatial judgments in the monkey: “high” and “low”. Anim. Cogn., 7(2), 101–108.
Abstract: Adult human subjects can classify the height of an object as belonging to either of the “high” or “low” categories by utilizing an abstract concept of midline that divides the vertical dimension into two halves. Children lack this abstract concept of midline, do not have a sense that these categories are directional opposites, and their categorical and comparative usages of high(er) or low(er) are restricted to the corresponding poles. We investigated the abilities of a rhesus monkey to perform categorical judgments in space. We were also interested in the presence of the congruity effect (a decrease in response time when the objects compared are closer to the category pole) in the monkey. The presence of this phenomenon in the monkey would allow us to relate the behavior of the animal to the two major competing hypotheses that have been suggested to explain the congruity effect in humans: the analog and semantic models. The monkey was trained in delayed match-to-sample tasks in which it had to categorize objects as belonging to either a high or low category. The monkey was able to generate an abstract notion of midline in a fashion similar to that of adult human subjects. The congruity effect was also present in the monkey. These findings, taken together with the notion that monkeys are not considered to think in propositional terms, may favor an analog comparison model in the monkey.
|
|
|
Gasser, R. B., Hung, G. - C., Chilton, N. B., & Beveridge, I. (2004). Advances in developing molecular-diagnostic tools for strongyloid nematodes of equids: fundamental and applied implications. Mol Cell Probes, 18(1), 3–16.
Abstract: Infections of equids with parasitic nematodes of the order Strongylida (subfamilies Strongylinae and Cyathostominae) are of major veterinary importance. In last decades, the widespread use of drugs against these parasites has led to problems of resistance within the Cyathostominae, and to an increase in their prevalence and intensity of infection. Novel control strategies, based on improved knowledge of parasite biology and epidemiology, have thus become important. However, there are substantial limitations in the understanding of fundamental biological and systematic aspects of these parasites, which have been due largely to limitations in their specific identification and diagnosis using traditional, morphological approaches. Recently, there has been progress in the development of DNA-based approaches for the specific identification of strongyloids of equids for systematic studies and disease diagnosis. The present article briefly reviews information on the classification, biology, pathogenesis, epidemiology of equine strongyloids and the diagnosis of infections, highlights knowledge gaps in these areas, describes recent advances in the use of molecular techniques for the genetic characterisation, specific identification and differentiation of strongyloids of equids as a basis for fundamental investigations of the systematics, population biology and ecology.
|
|
|
Giangaspero, A., Traversa, D., & Otranto, D. (2004). [Ecology of Thelazia spp. in cattle and their vectors in Italy]. Parassitologia, 46(1-2), 257–259.
Abstract: The genus Thelazia (Spirurida, Thelaziidae) includes a cosmopolitan group of eyeworm spirurids responsible for ocular infections in domestic and wild animals and transmitted by different species of muscids. Bovine thelaziosis is caused by Thelazia rhodesi Desmarest 1828, Thelazia gulosa Railliet & Henry 1910, and Thelazia skrjabini Erschow 1928, which occur in many countries; T. gulosa and T. skrjabini have been reported mainly in the New World, while T. rhodesi is particularly common in the Old World. In Italy, T. rhodesi was reported in southern regions a long time ago and, recently, T. gulosa and T. skrjabini have been identified in autochthonous cattle first in Apulia and then in Sardinia. Thirteen species of Musca are listed as intermediate hosts of eyeworms, but only Musca autumnalis and Musca larvipara have been demonstrated to act as vectors of Thelazia in the ex-URSS, North America, ex-Czechoslovakia and more recently in Sweden. In Italy, after the reports of T. gulosa and T. skrjabini in southern regions, the intermediate hosts of bovine eyeworms were initially only suspected as the predominant secretophagous Muscidae collected from the periocular region of cattle with thelaziosis were the face flies, M. autumnalis and M. larvipara, followed by Musca osiris, Musca tempestiva and Musca domestica. The well-known constraints in the identification of immature eyeworms to species by fly dissection and also the time-consuming techniques used constitute important obstacles to epidemiological field studies (i.e. vector identification and/or role, prevalence and pattern of infection in flies, etc.). Molecular studies have recently permitted to further investigations into this area. A PCR-RFLP analysis of the ribosomal ITS-1 sequence was developed to differentiate the 3 species of Thelazia (i.e. T. gulosa, T. rhodesi and T. skrjabini) found in Italy, then a molecular epidemiological survey has recently been carried out in field conditions throughout five seasons of fly activity and has identified the role of M. autumnalis, M. larvipara, M. osiris and M. domestica as vectors of T. gulosa and of M. autumnalis and M. larvipara of T. rhodesi. Moreover, M. osiris was described, for the first time, to act as a vector of T. gulosa and M. larvipara of T. gulosa and T. rhodesi. The mean prevalence in the fly population examined was found to be 2.86%. The molecular techniques have opened new perspectives for further research on the ecology and epidemiology not only of Thelazia in cattle but also of other autochthonous species of Thelazia which have been also recorded in Italy, such as Thelazia callipaeda, which is responsible for human and canid ocular infection and Thelazia lacrymalis, the horse eyeworm whose epidemiological molecular studies are in progress.
|
|
|
Gothe, R. (1994). [Tapeworms, a problem in equine practice?]. Tierarztl Prax, 22(5), 466–470.
Abstract: This paper gives a survey on biology and ecology of equine tapeworms as well as on pathogenesis, clinics, diagnosis, therapy, and prophylaxis of tapeworm infections.
|
|