|
Krueger, K., Schwarz, S., Marr, I., & Farmer, K. (2022). Laterality in Horse Training: Psychological and Physical Balance and Coordination and Strength Rather Than Straightness. Animals, 12(8), 1042.
Abstract: For centuries, a goal of training in many equestrian disciplines has been to straighten the horse, which is considered a key element in achieving its responsiveness and suppleness. However, laterality is a naturally occurring phenomenon in horses and encompasses body asymmetry, motor laterality and sensory laterality. Furthermore, forcibly counterbalancing motor laterality has been considered a cause of psychological imbalance in humans. Perhaps asymmetry and laterality should rather be accepted, with a focus on training psychological and physical balance, coordination and equal strength on both sides instead of enforcing “straightness”. To explore this, we conducted a review of the literature on the function and causes of motor and sensory laterality in horses, especially in horses when trained on the ground or under a rider. The literature reveals that body asymmetry is innate but does not prevent the horse from performing at a high level under a rider. Motor laterality is equally distributed in feral horses, while in domestic horses, age, breed, training and carrying a rider may cause left leg preferences. Most horses initially observe novel persons and potentially threatening objects or situations with their left sensory organs. Pronounced preferences for the use of left sensory organs or limbs indicate that the horse is experiencing increased emotionality or stress, and long-term insufficiencies in welfare, housing or training may result in left shifts in motor and sensory laterality and pessimistic mentalities. Therefore, increasing laterality can be regarded as an indicator for insufficiencies in housing, handling and training. We propose that laterality be recognized as a welfare indicator and that straightening the horse should be achieved by conducting training focused on balance, coordination and equal strength on both sides.
|
|
|
Schultheiss, O. C., Riebel, K., & Jones, N. M. (2009). Activity inhibition: A predictor of lateralized brain function during stress? Neuropsychology, 23(3), 392–404.
Abstract: The authors tested the hypothesis that activity inhibition (AI), a measure of the frequency of the word “not” in written material, marks a propensity to engage functions of the right hemisphere (RH) and disengage functions of the left hemisphere (LH), particularly during stress. Study 1 and Study 2 showed that high AI predicts faster detection of stimuli presented to the RH, relative to the LH. Study 2 provided evidence that the AI-laterality effect is specific to perceptual, but not motor, laterality and that it is particularly strong in individuals with low mood, but absent in individuals in a positive mood state. Study 3 showed that negative affective stimuli prime the AI-laterality effect more strongly than positive affective stimuli. Findings from Study 4 suggest that situationally induced frustration (losing a contest), in conjunction with high AI, leads to increased attentional laterality. The present findings substantially bolster the construct validity of AI and contribute to a better understanding of earlier findings linking AI to physiological stress responses, immune system functioning, alcohol abuse, and nonverbal behavior. (PsycINFO Database Record (c) 2010 APA, all rights reserved)
|
|
|
Schwarz, S., Marr, I., Farmer, K., Graf, K., Stefanski, V., & Krueger, K. (2022). Does Carrying a Rider Change Motor and Sensory Laterality in Horses? Animals, 12(8), 992.
Abstract: Laterality in horses has been studied in recent decades. Although most horses are kept for riding purposes, there has been almost no research on how laterality may be affected by carrying a rider. In this study, 23 horses were tested for lateral preferences, both with and without a rider, in three different experiments. The rider gave minimal aids and rode on a long rein to allow the horse free choice. Firstly, motor laterality was assessed by observing forelimb preference when stepping over a pole. Secondly, sensory laterality was assessed by observing perceptual side preferences when the horse was confronted with (a) an unfamiliar person or (b) a novel object. After applying a generalised linear model, this preliminary study found that a rider increased the strength of motor laterality (p = 0.01) but did not affect sensory laterality (p = 0.8). This suggests that carrying a rider who is as passive as possible does not have an adverse effect on a horse�s stress levels and mental state.
|
|
|
Tomkins, L. M., McGreevy, P. D., & Branson, N. J. (2010). Lack of standardization in reporting motor laterality in the domestic dog (Canis familiaris). Journal of Veterinary Behaviour, 5(5), 235–239.
Abstract: Over the past 2 decades, numerous studies have been undertaken to assess motor laterality in the domestic dog. In anticipation of growth in this area of enquiry, we decided to review the literature on canine motor biases to identify any shortcomings, reflect on the lessons to be learned from and offer ways forward for future research into canine laterality. The aim of this review is to (i) summarize motor laterality findings in the dog, (ii) highlight areas lacking in standardization, and (iii) propose necessary criteria for future tests and global reporting protocols. Our review of the literature highlighted the lack of standardization between studies in task selection, sample size, number of behavior scores recorded, and the methods by which motor laterality were classified and reported. This review illustrates the benefits of standardizing methods of motor laterality assessment so that comparisons can be made between the populations sampled. By adopting such an approach, researchers should mutually benefit as motor laterality data could then be compared and subjected to meta-analysis.
|
|