|
Boyce, P. N., & McLoughlin, P. D. (2021). Ecological Interactions Involving Feral Horses and Predators: Review with Implications for Biodiversity Conservation. Jour. Wild. Mgmt., n/a(n/a).
Abstract: ABSTRACT For many ecosystems, feral horses are increasingly becoming an important if not dominant component of ungulate biomass and hence influence on community dynamics. Yet we still know little of how horses contribute to key ecological interactions including predator-prey and indirect competitive relationships at a community level. Notably, feral species like horses can exhibit life-history traits that differ from that of native (mainly artiodactyl) herbivore competitors. Artificial selection for traits like increased, early, or extended reproduction that have yet to be reversed by natural selection, coupled with naturally selected differences in anatomy and behavior, in addition to unique management objectives for horses compared to other species, means that the dynamics of feral horse populations are not likely to align with what might be expected of other large herbivores. Unexpected population dynamics and inherent biological asymmetries between native ungulates and feral horses may therefore influence the former via direct competition for shared resources and through enemy-mediated interactions like apparent competition. In several localities feral horses now co-exist with multiple native prey species, some of which are in decline or are species at risk. Compounding risks to native species from direct or indirect competitive exclusion by horses is the unique nature and socio-political context of feral horse management, which tends towards allowing horse populations to be limited largely by natural, density-dependent factors. We summarize the inherent asymmetries between feral horse biology and that of other ungulate prey species with consequences for conservation, focusing on predator-prey and emerging indirect interactions in multi-prey systems, and highlight future directions to address key knowledge gaps in our understanding of how feral horses may now be contributing to the (re)structuring of food webs. Observations of patterns of rapid growth and decline, and associated skews in sex ratios of feral horse populations, indicate a heightened potential for indirect interactions among large ungulate prey species, where there is a prevalence of feral horses as preferred prey, particularly where native prey are declining. In places like western North America, we expect predator-prey interactions involving feral horses to become an increasingly important factor in the conservation of wildlife. This applies not only to economically or culturally important game species but also at-risk species, both predators (e.g., wolves [Canis lupus], grizzly bears [Ursus arctos]) and prey (e.g., woodland caribou [Rangifer tarandus caribou]), necessitating an ecological understanding of the role of horses in natural environments that goes beyond that of population control. ? 2021 The Wildlife Society.
|
|
|
Dall, S. R. X., Houston, A. I., & McNamara, J. M. (2004). The behavioural ecology of personality: consistent individual differences from an adaptive perspective. Ecol. Letters, 7, 734–739.
Abstract: Individual humans, and members of diverse other species, show consistent differences in
aggressiveness, shyness, sociability and activity. Such intraspecific differences in
behaviour have been widely assumed to be non-adaptive variation surrounding
(possibly) adaptive population-average behaviour. Nevertheless, in keeping with recent
calls to apply Darwinian reasoning to ever-finer scales of biological variation, we sketch
the fundamentals of an adaptive theory of consistent individual differences in behaviour.
Our thesis is based on the notion that such .personality differences. can be selected for if
fitness payoffs are dependent on both the frequencies with which competing strategies
are played and an individual`s behavioural history. To this end, we review existing models
that illustrate this and propose a game theoretic approach to analyzing personality
differences that is both dynamic and state-dependent. Our motivation is to provide
insights into the evolution and maintenance of an apparently common animal trait:
personality, which has far reaching ecological and evolutionary implications.
|
|
|
Reddon, A. R., & Hurd, P. L. (2009). Individual differences in cerebral lateralization are associated with shy-bold variation in the convict cichlid. Anim. Behav., 77(1), 189–193.
Abstract: Cerebral lateralization, the preferential use of one hemisphere of the brain to perform certain cognitive functions, is a widespread and evolutionarily ancient adaptation. Lateralization appears to enhance cognitive capacity, yet substantial individual variation in the strength cerebral lateralization is apparent in all species studied so far. It is puzzling that cerebral lateralization, a seemingly advantageous trait, has not been driven to fixation. It has been suggested that variation in lateralization may be linked to individual variation in behaviour, which itself may be subject to disruptive selection. We examined the relation between cerebral lateralization and individual variation in boldness in the convict cichlid, Archocentrus nigrofasciatus. We show that convict cichlids that are more strongly lateralized when exploring a familiar environment, but not a novel one, are quicker to emerge from a shelter in a test for boldness. The possibility that cerebral lateralization is linked to life history strategy is discussed.
|
|