|
Albentosa, M. J., Kjaer, J. B., & Nicol, C. J. (2003). Strain and age differences in behaviour, fear response and pecking tendency in laying hens. Br Poult Sci, 44(3), 333–344.
Abstract: 1. Behaviours associated with a high or low tendency to feather peck could be used as predictors of feather pecking behaviour in selective breeding programmes. This study investigated how strain and age at testing influenced responses in behavioural tests. 2. Four layer-type strains (ISA Brown, Columbian Blacktail, Ixworth and a high feather pecking (HP) and a low feather pecking (LP) line of White Leghorn) were reared in 6 same-strain/line pens of 8 birds from one day old. Birds in half the pens were given an open field test, a novel object test and a test with loose feather bundles between 4 and 12 weeks of age and a tonic immobility (TI) test at 13 weeks of age. All pens were tested with fixed feather bundles at 26 weeks, and undisturbed behaviour in the home pens was videoed at 1 and 27 weeks of age. Daily records of plumage damage were used as an indicator of feather pecking activity in the home pens. 3. Strain did not influence novel object test, open field test or loose feather test behaviour, although age effects in all three tests indicated a reduction in fearfulness and/or an increase in exploratory behaviour with increasing age. 4. White Leghorns showed longer TI durations than the other strains but less pecking at fixed feather bundles than ISA Browns and Columbian Blacktails. 5. There were few associations between behaviour in the 5 different tests, indicating that birds did not have overall behavioural traits that were consistent across different contexts. This suggests hens cannot easily be categorised into different behavioural 'types', based on their test responses and casts doubt on the usefulness of tests as predictors of feather pecking.
|
|
|
Beaver, B. V. (1986). Aggressive behavior problems. Vet Clin North Am Equine Pract, 2(3), 635–644.
Abstract: Accurate diagnosis of the cause of aggression in horses is essential to determining the appropriate course of action. The affective forms of aggression include fear-induced, pain-induced, intermale, dominance, protective, maternal, learned, and redirected aggressions. Non-affective aggression includes play and sex-related forms. Irritable aggression and hypertestosteronism in mares are medical problems, whereas genetic factors, brain dysfunction, and self-mutilation are also concerns.
|
|
|
Beckers, T., Miller, R. R., De Houwer, J., & Urushihara, K. (2006). Reasoning rats: forward blocking in Pavlovian animal conditioning is sensitive to constraints of causal inference. J Exp Psychol Gen, 135(1), 92–102.
Abstract: Forward blocking is one of the best-documented phenomena in Pavlovian animal conditioning. According to contemporary associative learning theories, forward blocking arises directly from the hardwired basic learning rules that govern the acquisition or expression of associations. Contrary to this view, here the authors demonstrate that blocking in rats is flexible and sensitive to constraints of causal inference, such as violation of additivity and ceiling considerations. This suggests that complex cognitive processes akin to causal inferential reasoning are involved in a well-established Pavlovian animal conditioning phenomenon commonly attributed to the operation of basic associative processes.
|
|
|
Branson, N. J., & Rogers, L. J. (2006). Relationship between paw preference strength and noise phobia in Canis familiaris. J. Comp. Psychol., 120(3), 176–183.
Abstract: The authors investigated the relationship between degree of lateralization and noise phobia in 48 domestic dogs (Canis familiaris) by scoring paw preference to hold a food object and relating it to reactivity to the sounds of thunderstorms and fireworks, measured by playback and a questionnaire. The dogs without a significant paw preference were significantly more reactive to the sounds than the dogs with either a left-paw or right-paw preference. Intense reactivity, therefore, is associated with a weaker strength of cerebral lateralization. The authors note the similarity between their finding and the weaker hand preferences shown in humans suffering extreme levels of anxiety and suggest neural mechanisms that may be involved. (PsycINFO Database Record (c) 2010 APA, all rights reserved)
|
|
|
Breuer, K., Hemsworth, P. H., & Coleman, G. J. (2003). The effect of positive or negative handling on the behavioural and physiological responses of nonlactating heifers. Appl. Anim. Behav. Sci., 84(1), 3–22.
Abstract: This experiment investigated the effects of positive and negative tactile handling on the stress physiology and behaviour of dairy heifers. Forty-eight 5-14-month-old nonlactating Holstein-Friesian heifers were allocated to one of two handling treatments, either positive or negative tactile handling, over four time replicates. Handling was imposed twice daily, 2-5 min per session and involved moving animals individually along a 64 m outdoor route. The negatively handled heifers took longer to approach within 1 and 2 m of a stimulus person in a standard test, than their positively handled counterparts (P<0.001) and had a greater flight distance to an approaching stimulus (P<0.001). The time taken by the heifers to approach within 1 and 2 m of a familiar person was similar to that taken to approach within 1 and 2 m of an unfamiliar person in the standard test (P<0.05). There was a tendency for heifers to have a greater flight distance from the approaching unfamiliar person than from the approaching familiar person (P=0.06). The negatively handled heifers had greater (P<0.05) increases in total cortisol concentrations 5, 10 and 15 min after exposure to a human and had higher (P<0.05) free cortisol concentrations in the afternoon than the positively handled heifers. It is concluded that the nature of the human contact affects the subsequent behavioural response of heifers to humans. This behavioural response may extend to other humans through the process of stimulus generalisation, although there was some evidence of moderate discrimination. Negative handling results in an acute stress response in the presence of humans and also leads to a chronic stress response. Further research into the effect of these stress responses on milk production and welfare in fearful cows in a commercial situation is suggested.
|
|
|
Cheney, D. L., Seyfarth, R. M., & Silk, J. B. (1995). The responses of female baboons (Papio cynocephalus ursinus) to anomalous social interactions: evidence for causal reasoning? J Comp Psychol, 109(2), 134–141.
Abstract: Baboons' (Papio cynocephalus ursinus) understanding of cause-effect relations in the context of social interactions was examined through use of a playback experiment. Under natural conditions, dominant female baboons often grunt to more subordinate mothers when interacting with their infants. Mothers occasionally respond to these grunts by uttering submissive fear barks. Subjects were played causally inconsistent call sequences in which a lower ranking female apparently grunted to a higher ranking female, and the higher ranking female apparently responded with fear barks. As a control, subjects heard a sequence made causally consistent by the inclusion of grunts from a 3rd female that was dominant to both of the others. Subjects responded significantly more strongly to the causally inconsistent sequences, suggesting that they recognized the factors that cause 1 individual to give submissive vocalizations to another.
|
|
|
Christensen, J. W. (2012). Object habituation in horses: Voluntary vs. negatively reinforced approach to frightening stimuli. In K. Krueger (Ed.), Proceedings of the 2. International Equine Science Meeting (Vol. in press). Wald: Xenophon Publishing.
Abstract: The ability and ease of horses to habituate to frightening stimuli greatly increases safety in the horse-human relationship. Several different techniques have been suggested for habituation training of horses and under certain conditions, preventing animals from avoidance reactions during exposure to frightening stimuli is believed to facilitate habituation. Response prevention does, however, lead to a loss of control, which is a known stress inducer in both animals and humans. This experiment investigated whether horses show increased stress responses when negatively reinforced to approach a mildly frightening stimulus, compared to horses allowed to voluntarily explore the same stimulus. We further investigated whether the prevention of avoidance responses in horses that are negatively reinforced to approach the stimulus, facilitates habituation to the stimulus. Twenty-two 2-3 years old Danish warmblood geldings were included in the study. Half of the horses (NR group) were negatively reinforced (through halter and rope pressure) by a familiar human handler to approach a collection of frightening objects (six open and colourful umbrellas) placed in a semi-circle in a familiar test arena. The other half of the horses were released in the arena and were free to avoid or explore the objects (VOL group). On the next day, all horses were exposed to the objects again without a human to investigate the rate of habituation. Behavioural and heart rate responses were recorded on both days. Data were analysed in a two way repeated measures ANOVA and post hoc analysed via the Holm-Sidak method. In the VOL group, all horses initially chose to avoid the unknown objects, whereas the handler managed to get all horses in the NR group to approach and stand next to the objects within the first 2-min session. As expected, horses in the NR group had a significantly longer duration of alertness (sec, mean ± se: NR: 23 ± 4.1 vs. VOL: 16 ± 4.7, P=0.026) and a higher max HR in the first session (bpm, mean ± se: NR: 106 ± 5.2 vs. VOL: 88 ± 4.4, P=0.004). On the next day, however, the NR horses spent significantly less time investigating the objects (sec, mean ± se: NR: 13 ± 4.1 vs. VOL: 24 ± 6.0, P=0.005) and had a shorter latency to approach a feed container, placed next to the objects (sec, mean ± se: NR: 25 ± 3.9 vs. VOL: 47 ± 16.2, P=0.031), indicating increased habituation. In conclusion, negatively reinforced approach to mildly frightening objects appears to increase stress responses during the initial exposure, but also to facilitate habituation in young horses.
|
|
|
Christensen, J. W., & Rundgren, M. (2008). Predator odour per se does not frighten domestic horses. Appl. Anim. Behav. Sci., 112(1-2), 136–145.
Abstract: Horses frequently react nervously when passing animal production farms and other places with distinctive smells, leading riders to believe that horses are innately frightened by certain odours. In three experiments, we investigated how horses respond to (1) urine from wolves and lions, (2) blood from slaughtered conspecifics and fur-derived wolf odour, and (3) a sudden auditory stimulus in either presence or absence of fur-derived wolf odour. The experiments were carried out under standardised conditions using a total of 45 naive, 2-year-old horses. In the first two experiments we found that horses showed significant changes in behaviour (Experiments 1 and 2: increased sniffing; Experiment 2 only: increased vigilance, decreased eating, and more behavioural shifts), but no increase in heart rate compared to controls when exposed to predator odours and conspecific blood in a known test environment. However, the third experiment showed that exposure to a combination of wolf odour and a sudden stimulus (sound of a moving plastic bag) caused significantly increased heart rate responses and a tendency to a longer latency to resume feeding, compared to control horses exposed to the sudden stimulus without the wolf odour. The results indicate that predator odour per se does not frighten horses but it may cause an increased level of vigilance. The presence of predator odour may, however, cause an increased heart rate response if horses are presented to an additional fear-eliciting stimulus. This strategy may be adaptive in the wild where equids share habitats with their predators, and have to trade-off time and energy spent on anti-predation responses against time allocated to essential non-defensive activities.
|
|
|
Christensen, J. W., Ahrendt, L. P., Lintrup, R., Gaillard, C., Palme, R., & Malmkvist, J. (2012). Does learning performance in horses relate to fearfulness, baseline stress hormone, and social rank? In Applied Animal Behaviour Science (Vol. 140, pp. 44–52).
Abstract: The ability of horses to learn and remember new tasks is fundamentally important for their use by humans. Fearfulness may, however, interfere with learning, because stimuli in the environment can overshadow signals from the rider or handler. In addition, prolonged high levels of stress hormones can affect neurons within the hippocampus; a brain region central to learning and memory. In a series of experiments, we aimed to investigate the link between performance in two learning tests, the baseline level of stress hormones, measured as faecal cortisol metabolites (FCM), fearfulness, and social rank. Twenty-five geldings (2 or 3 years old) pastured in one group were included in the study. The learning tests were performed by professional trainers and included a number of predefined stages during which the horses were gradually trained to perform exercises, using either negative (NR) or positive reinforcement (PR). Each of the learning tests lasted 3 days; 7min/horse/day. The NR test was repeated in a novel environment. Performance, measured as final stage in the training programme, and heart rate (HR) were recorded. Faeces were collected on four separate days where the horses had been undisturbed at pasture for 48h. Social rank was determined through observations of social interactions during feeding. The fear test was a novel object test during which behaviour and HR were recorded. Performance in the NR and PR learning tests did not correlate. In the NR test, there was a significant, negative correlation between performance and HR in the novel environment (rS=-0.66, P<0.001, i.e. nervous horses had reduced performance), whereas there was no such correlation in the home environment (both NR and PR). Behavioural reactions in the fear test correlated significantly with performance in the NR test in the novel environment (e.g. object alertness and final stage: rS=-0.43, P=0.04), suggesting that performance under unfamiliar, stressful conditions may be predicted by behavioural responses in a fear test. There was a negative correlation between social rank and baseline stress hormones (rS=-0.43, P=0.04), i.e. high rank corresponded to low FCM concentrations, whereas neither rank nor FCM correlated with fearfulness or learning performance. We conclude that performance under stressful conditions is affected by activation of the sympathetic nervous system during training and related to behavioural responses in a standardised fear test. Learning performance in the home environment, however, appears unrelated to fearfulness, social rank and baseline FCM levels.
|
|
|
Christensen, J. W., Keeling, L. J., & Nielsen, B. L. (2005). Responses of horses to novel visual, olfactory and auditory stimuli. Appl. Anim. Behav. Sci., 93(1-2), 53–65.
Abstract: Responses of horses towards fear-eliciting stimuli can have important consequences for both human and horse safety. This experiment was designed to investigate behavioural and heart rate (HR) responses of horses to novel visual, auditory and olfactory stimuli. Twenty-four 2-year-old, previously unhandled, stallions were habituated to receive a food reward from a container in a test arena. Each horse was exposed to three 2 min tests in a balanced design where in addition to the feed container, either a traffic cone (visual test), white noise (auditory test) or eucalyptus oil applied to the inside of the container (olfactory test) were used as the novel stimuli. Compared to the control, less time was spent eating during all tests. There was no difference in locomotion activity in the different test situations, but presentation of the novel visual and auditory stimuli elicited significantly increased HR responses in the horses, compared to their response to the arena without novel stimuli (control), whereas there was no increase in HR response to the olfactory stimulus. However, during the olfactory test, the horses had an increased number of eating bouts and became more vigilant towards their surroundings, whereas during the visual and auditory tests, more time was spent alert towards the stimulus. The horses also took significantly more steps backwards in response to the auditory test. The heart rate responses correlated between tests and reflect a non-differentiated activation of the sympathetic nervous system, while the behavioural responses were linked to the type of stimulus.
|
|