|
Art, T., & Lekeux, P. (2005). Exercise-induced physiological adjustments to stressful conditions in sports horses. Adaptability of sport horses to stressful conditions, 92(2), 101–111.
Abstract: Among athletic/sports animals, the horse has a unique ability to increase its oxygen uptake by a factor of 60 during heavy exercise. This is achieved by physiological adaptations of all the links in the oxygen chain. Ventilation is increased by a factor of 30. Since the horse is a compulsory nasal breather, this hyperpnea necessitates high transmural pressure changes, which may be responsible for the dynamic collapse of the airways. Blood flow is increased by a factor of 10. Since the left ventricle is not very compliant, this increase necessitates a high filling pressure in the pulmonary circulation, which may induce capillary stress failure and exercise-induced pulmonary haemorrhage. Lastly, oxygen transport is improved by splenic contraction which increases haemoglobinemia by 50%. Sports horses frequently suffer from several problems, which are related either to endogenous or exogenous stresses experienced during their career. These stresses, caused by the use of the horse as a competition animal, may lead to several medical problems. At a systemic level, endogenous stresses include hyperkaliemia, lactacidemia, and hyperthermia; oxidative stress may induce problems at a general, and/or a pulmonary level. External factors, e.g. poor quality of inspired air, transport, hot and humid ambient conditions, and microbiological agents, may also induce abnormal body attacks, and lead to health problems.
|
|
|
Billat, L. V. (2001). Interval Training for Performance: A Scientific and Empirical Practice: Special Recommendations for Middle- and Long-Distance Running. Part I: Aerobic Interval Training. Sports Med, 31(1), 13–31.
Abstract: This article traces the history of scientific and empirical interval training. Scientific research has shed some light on the choice of intensity, work duration and rest periods in so-called 'interval training'. Interval training involves repeated short to long bouts of rather high intensity exercise (equal or superior to maximal lactate steady-state velocity) interspersed with recovery periods (light exercise or rest). Interval training was first described by Reindell and Roskamm and was popularised in the 1950s by the Olympic champion, Emil Zatopek. Since then middle- and long- distance runners have used this technique to train at velocities close to their own specific competition velocity. In fact, trainers have used specific velocities from 800 to 5000m to calibrate interval training without taking into account physiological markers. However, outside of the competition season it seems better to refer to the velocities associated with particular physiological responses in the range from maximal lactate steady state to the absolute maximal velocity. The range of velocities used in a race must be taken into consideration, since even world records are not run at a constant pace. Copyright 2001 Adis International
|
|
|
Bystrom, A., Roepstorff, L., & Johnston, C. (2006). Effects of draw reins on limb kinematics. Equine Vet J Suppl, (36), 452–456.
Abstract: REASONS FOR PERFORMING STUDY: No data exist on the GRF-kinematics relation due to changes caused by equestrian interventions. HYPOTHESIS: Through the judicious use of draw reins the rider can influence the kinematics of the horse to meet stated goals of dressage training. Relating the results to previously published kinetic data of the same experiment implies a possible relationship between kinetics and kinematics. METHODS: The kinematics of 8 sound Swedish Warmblood horses were measured whilst the horses were being ridden with and without draw reins. Three conditions were evaluated: 1) draw reins only (DR), 2) combination of draw reins and normal reins (NR+DR) and 3) normal reins only (NR). RESULTS: Head and neck angles were significantly decreased by the draw rein but 4-5 times more so for DR when with NR+DR. The forelimb position at hoof lift-off was significantly more caudal with DR. In the hind limb the hip joint extended more quickly and the hock joint flexed more with NR+DR than with NR. Compared to DR the hip joint angular pattern was not significantly different, but the pelvis was more horizontal. CONCLUSION: Riding with a draw rein can have significant influence on the kinematics of the horse. Some of the observed changes can be coupled to changes in kinetics. The hock joint angle seems to be a fairly reliable indicator of load on the hind limb and the angle of femur appears important for hind limb propulsion, when considered in conjunction with the orientation of the pelvis. POTENTIAL RELEVANCE: These findings are important for riders and trainers, as kinematic changes are what trainers observe. It is thereby important to ascertain which kinematic changes are consistently coupled to changes in kinetics in order for trainers to be able to judge correctly the success of intended goals. Further studies are warranted to validate and confirm suggested relationships between kinetics and kinematics.
|
|
|
Davies, H. M. S. (2005). The timing and distribution of strains around the surface of the midshaft of the third metacarpal bone during treadmill exercise in one Thoroughbred racehorse. Aust Vet J, 83(3), 157–162.
Abstract: OBJECTIVE: To confirm that the midshaft dorsal cortex of the third metacarpal bone experienced higher compressive strains during fast exercise than the medial or lateral cortices, and that the strain peak occurred earlier in the hoof-down phase of the stride on the dorsal cortex than the medial or lateral cortices. DESIGN: Observations of a single horse. PROCEDURE: Strains were collected from a single, sound, 3-year-old Thoroughbred mare during treadmill exercise from rosette strain gauges implanted onto the medial, lateral and dorsal surfaces of the midshaft of the right cannon bone, simultaneously with data from a hoof switch that showed when the hoof was in the stance phase. RESULTS: Peak compressive strains on the dorsal surface of the third metacarpal bone were proportional to exercise speed and occurred at about 30% of stance. Peak compressive strains on the medial surface of the non-lead limb reached a maximum at a speed around 10 m/s and occurred at mid-stance. Peak compressive strains on the lateral surface varied in timing and size between strides at all exercise speeds, but remained less than -2000 microstrains. CONCLUSIONS: The timing of peak compressive strains on the dorsal cortex suggests a relationship to deceleration of the limb following hoof impact, so the main determinants of their size would be exercise speed and turning (as shown in previous experiments). This experiment confirms data from other laboratories that were published but not discussed, that peak compressive strains on the medial surface occur at mid-stance. This suggests that they are related to the support of body weight. The strains on the lateral cortex occurred at variable times so may be associated with the maintenance of balance as well as the support of body weight. Understanding the loading of the third metacarpal bone will help to determine causes of damage to it and ways in which the bone might be conditioned to prevent such damage.
|
|
|
Davies, H. M. S., & Merritt, J. S. (2004). Surface strains around the midshaft of the third metacarpal bone during turning. Equine Veterinary Journal, 36(8), 689–692.
Abstract: Summary Reasons for performing study: Bone strains quantify skeletal effects of specific exercise and hence assist in designing training programmes to avoid bone injury. Objective: To test whether compressive strains increase on the lateral surface of the inside third metacarpal bone (McIII) and the medial surface of the outside McIII in a turn. Methods: Rosette strain gauges on dorsal, medial and lateral surfaces of the midshaft of the left McIII in 2 Thoroughbred geldings were recorded simultaneously during turning at the walk on a bitumen surface. Results: Medial surface: Compression peaks were larger in the outside limb. Tension peaks were larger in the inside limb and in a tighter turn. On the lateral surface compression and tension peaks were larger on the inside limb, which showed the largest recorded strains (compression of -1400 microstrains). Dorsal compression strains were larger on the outside limb and on a larger circle. Tensile strains were similar in both directions and larger on a larger circle. Conclusions: Compressive strains increased on the lateral surface of the inside McIII and medial surface of the outside McIII in a turn. Potential relevance: Slow-speed turning exercise may be sufficient to maintain bone mechanical characteristics in the inside limb lateral McIII cortex. Further work is needed to confirm these findings and to determine whether faster gaits and/or tighter turns are sufficient to cause bone modelling levels of strain in the medial and lateral McIII cortex.
|
|
|
de Oliveira, K., Soutello, R. V. G., da Fonseca, R., Costa, C., de L. Meirelles, P. R., Fachiolli, D. F., et al. (2015). Gymnastic Training and Dynamic Mobilization Exercises Improve Stride Quality and Increase Epaxial Muscle Size in Therapy Horses. Journal of Equine Veterinary Science, 35(11), 888–893.
Abstract: The objective was to evaluate the efficacy of gymnastic training (GYM) and dynamic mobilization exercises (DMEs) on stride length (SL) and epaxial muscle size in therapy horses. Nine cross-bred hippotherapy horses that performed three, 25-minute therapeutic riding sessions per week throughout the study period were randomly assigned to three experimental groups: a control group in which the horses were sedentary with no additional physical activity; a group that performed DMEs; and a group that performed both DMEs and additional GYM including pelvic tilting, backing, turning in small circles, and walking over a raised rail to strengthen the abdominal and pelvic stabilizer muscles. The exercises were performed 3Â days per week for 3Â months, with evaluations at the start and end of the study. Stride quality was assessed by measuring SL and tracking distance (TD). Epaxial muscle size was monitored by ultrasonographic measurement of m. longissimus dorsi (LD) thickness and m. multifidi (MM) cross-sectional area. Paired t tests were used to compare within groups across time, and between groups were detected using analysis of variance with Tukey post hoc test. When walking at 1.3Â m/s, SL and TD at walk increased significantly (P < .05) in horses subjected to GYM. Thickness of LD did not change in any group, but cross-sectional area of MM increased significantly by 3.55Â cm2 (DME) and 3.78Â cm2 (GYM). It was concluded that GYM training improved stride quality and DME-stimulated MM hypertrophy which has been shown to improve intervertebral joint stability in other species.
|
|
|
Devienne, M. F., & Guezennec, C. Y. (2000). Energy expenditure of horse riding. Eur J Appl Physiol, 82(5-6), 499–503.
Abstract: Oxygen consumption (VO2), ventilation (VE) and heart rate (HR) were studied in five recreational riders with a portable oxygen analyser (K2 Cosmed, Rome) telemetric system, during two different experimental riding sessions. The first one was a dressage session in which the rider successively rode four different horses at a walk, trot and canter. The second one was a jumping training session. Each rider rode two horses, one known and one unknown. The physiological parameters were measured during warm up at a canter in suspension and when jumping an isolated obstacle at a trot and canter. This session was concluded by a jumping course with 12 obstacles. The data show a progressive increase in VO2 during the dressage session from a mean value of 0.70 (0.18) l x min(-1) [mean (SD)] at a walk, to 1.47 (0.28) l x min(-1) at a trot, and 1.9 (0.3) l x min(-1) at a canter. During the jumping session, rider VO2 was 2 (0.33) l x min(-1) with a mean HR of 155 beats x min(-1) during canter in suspension, obstacle trot and obstacle canter. The jumping course significantly enhanced VO2 and HR up to mean values of 2.40 (0.35) l x min(-1) and 176 beats x min(-1), respectively. The comparison among horses and riders during the dressage session shows differences in energy expenditure according to the horse for the same rider and between riders. During the jumping session, there was no statistical difference between riders riding known and unknown horses. In conclusion these data confirm that riding induces a significant increase in energy expenditure. During jumping, a mean value of 75% VO2max was reached. Therefore, a good aerobic capacity seems to be a factor determining riding performance in competitions. Regular riding practice and additional physical training are recommended to enhance the physical fitness of competitive riders.
|
|
|
Fruehwirth, B., Peham, C., Scheidl, M., & Schobesberger, H. (2004). Evaluation of pressure distribution under an English saddle at walk, trot and canter. Equine Vet J, 36(8), 754–757.
Abstract: REASONS FOR PERFORMING STUDY: Basic information about the influence of a rider on the equine back is currently lacking. HYPOTHESIS: That pressure distribution under a saddle is different between the walk, trot and canter. METHODS: Twelve horses without clinical signs of back pain were ridden. At least 6 motion cycles at walk, trot and canter were measured kinematically. Using a saddle pad, the pressure distribution was recorded. The maximum overall force (MOF) and centre of pressure (COP) were calculated. The range of back movement was determined from a marker placed on the withers. RESULTS: MOF and COP showed a consistent time pattern in each gait. MOF was 12.1 +/- 1.2 and 243 +/- 4.6 N/kg at walk and trot, respectively, in the ridden horse. In the unridden horse MOF was 172.7 +/- 11.8 N (walk) and 302.4 +/- 33.9 N (trot). At ridden canter, MOF was 27.2 +/- 4.4 N/kg. The range of motion of the back of the ridden horse was significantly lower compared to the unridden, saddled horse. CONCLUSIONS AND POTENTIAL RELEVANCE: Analyses may help quantitative and objective evaluation of the interaction between rider and horse as mediated through the saddle. The information presented is therefore of importance to riders, saddlers and equine clinicians. With the technique used in this study, style, skill and training level of different riders can be quantified, which would give the opportunity to detect potentially harmful influences and create opportunities for improvement.
|
|
|
Gramkow, H. L., & Evans, D. L. (2006). Correlation of race earnings with velocity at maximal heart rate during a field exercise test in thoroughbred racehorses. Equine Vet J Suppl, (36), 118–122.
Abstract: REASONS FOR PERFORMING STUDY: Running ability of Thoroughbred racehorses is correlated with maximal oxygen uptake, and the velocity at maximal oxygen uptake is highly correlated with the velocity at maximal heart rate (VHRmax). OBJECTIVE: To investigate the relationship between VHRmax and racing performance, expressed as 'peak dollars earned per race start'. METHODS: Heart rate (HR) and velocity were recorded in 25 Thoroughbred racehorses during trotting and subsequent fast gallops in the field at velocities of 15-16 m/sec. Velocity was recorded by a global positioning system (GPS). Maximal HR (HRmax) and maximal velocity (Vmax) were identified, and a linear regression of HR on velocity for trotting and galloping data was constructed to derive VHRmax. Horses followed the training programme designed by one trainer, had at least 6 race starts and were clinically sound at the time of testing. Race earnings were expressed as the peak dollars per start in the horse's race career. Data were normalised using the results for the square root of 'peak dollars earned per race start' and the significance of associations between variables was determined by correlation coefficient and least square analyses. RESULTS: Horses with higher VHRmax earned significantly more dollars per race start (r = 0.41, P<0.05), and horses with VHRmax less than 14.5 m/sec had mean earnings of less than A$2500 per race. There were no correlations between race earnings and either HRmax or Vmax. CONCLUSION: Field studies of the relationship between HR and velocity with a GPS enable identification of horses with limited earnings. POTENTIAL RELEVANCE: This study demonstrates that a field test of fitness of Thoroughbred racehorses that correlates with retrospective racing ability is feasible. The technique has potential application in commercial training environments assisting with decisions concerning racing careers of individual racehorses.
|
|
|
Hada, T., Ohmura, H., Mukai, K., Eto, D., Takahashi, T., & Hiraga, A. (2006). Utilisation of the time constant calculated from heart rate recovery after exercise for evaluation of autonomic activity in horses. Equine Vet J Suppl, (36), 141–145.
Abstract: REASONS FOR PERFORMING STUDY: Heart rate (HR) recovery immediately after exercise is controlled by autonomic functions and the time constant (T) calculated from HR recovery is thought to be an index of parasympathetic activity in man. OBJECTIVES: To investigate whether it is possible to evaluate autonomic function using the time constant in horses. METHODS: Five Thoroughbred horses were subjected to a standard exercise test. Following pre-medication with saline, atropine and/or propranolol, the horses ran for 2.5 min at a speed of 8 m/sec at a 10% incline and T was calculated from HR after the exercise. Secondly, 7 Thoroughbred horses were then trained for 11 weeks and T and maximal oxygen uptake (VO2max) measured at intervals of 1 or 2 weeks. In 6 horses, T with atropine pre-medication was also measured before and after the whole training period. Furthermore, the HR variability at rest was evaluated by power spectral analysis at intervals of 3 or 4 weeks. RESULTS: Time constant was increased by atropine and/or propranolol pre-medication, decreased with the progress of training and inversely correlated with VO2max during training (r = 0.43, P<0.005). Parasympathetic blockade significantly decreased T only after and not before, the training; however, T was lower in post training than in pretraining, irrespective of parasympathetic blockade. On the other hand, parasympathetic activity at rest was attenuated and sympathetic activity became predominant following the training. CONCLUSION: Heart rate recovery is affected by sympathetic withdrawal and parasympathetic reactivation in horses and suggests that physical training hastened HR recovery by improving the parasympathetic function after exercise with aerobic capacity. However, the effects of other factors need to be considered because the training effect appeared on T even under parasympathetic blockade. The parasympathetic activity at rest is in contrast to that after exercise, suggesting that T does not reflect parasympathetic activity at rest. POTENTIAL RELEVANCE: If demonstrated how HR recovery is controlled after exercise, its analysis will be important in the evaluation of physical fitness in horses.
|
|