|
A. Wiggins, & K. Crowston. (2011). From Conservation to Crowdsourcing: A Typology of Citizen Science. In 2011 44th Hawaii International Conference on System Sciences (pp. 1–10). 2011 44th Hawaii International Conference on System Sciences.
Abstract: Citizen science is a form of research collaboration involving members of the public in scientific research projects to address real-world problems. Often organized as a virtual collaboration, these projects are a type of open movement, with collective goals addressed through open participation in research tasks. Existing typologies of citizen science projects focus primarily on the structure of participation, paying little attention to the organizational and macrostructural properties that are important to designing and managing effective projects and technologies. By examining a variety of project characteristics, we identified five types-Action, Conservation, Investigation, Virtual, and Education- that differ in primary project goals and the importance of physical environment to participation.
|
|
|
Bücheler, T., & Sieg, J. H. (2011). Understanding Science 2.0: Crowdsourcing and Open Innovation in the Scientific Method. Proceedings of the 2nd European Future Technologies Conference and Exhibition 2011 (FET 11), 7, 327–329.
Abstract: The innovation process is currently undergoing significant change in many industries. The World Wide Web has created a virtual world of collective intelligence and helped large groups of people connect and collaborate in the innovation process [1]. Von Hippel [2], for instance, states that a large number of users of a given technology will come up with innovative ideas. This process, originating in business, is now also being observed in science. Discussions around “Citizen Science” [3] and “Science 2.0” [4] suggest the same effects are relevant for fundamental research practices. “Crowdsourcing” [5] and “Open Innovation” [6] as well as other names for those paradigms, like Peer Production, Wikinomics, Swarm Intelligence etc., have become buzzwords in recent years. However, serious academic research efforts have also been started in many disciplines. In essence, these buzzwords all describe a form of collective intelligence that is enabled by new technologies, particularly internet connectivity. The focus of most current research on this topic is in the for-profit domain, i.e. organizations willing (and able) to pay large sums to source innovation externally, for instance through innovation contests. Our research is testing the applicability of Crowdsourcing and some techniques from Open Innovation to the scientific method and basic science in a non-profit environment (e.g., a traditional research university). If the tools are found to be useful, this may significantly change how some research tasks are conducted: While large, apriori unknown crowds of “irrational agents” (i.e. humans) are used to support scientists (and teams thereof) in several research tasks through the internet, the usefulness and robustness of these interactions as well as scientifically important factors like quality and validity of research results are tested in a systematic manner. The research is highly interdisciplinary and is done in collaboration with scientists from sociology, psychology, management science, economics, computer science, and artificial intelligence. After a pre-study, extensive data collection has been conducted and the data is currently being analyzed. The paper presents ideas and hypotheses and opens the discussion for further input.
|
|
|
Krueger, K., Trager, L., Farmer, K., & Byrne, R. (2022). Tool Use in Horses. Animals, 12(15), 1876.
Abstract: Tool use has not yet been confirmed in horses, mules or donkeys. As this subject is difficult to research with conventional methods, we used a crowdsourcing approach to gather data. We contacted equid owners and carers and asked them to report and video examples of �unusual� behaviour via a dedicated website. We also searched YouTube and Facebook for videos of equids showing tool use. From 635 reports, including 1014 behaviours, we found 20 cases of tool use, 13 of which were unambiguous in that it was clear that the behaviour was not trained, caused by reduced welfare, incidental or accidental. We then assessed (a) the effect of management conditions on tool use and (b) whether the animals used tools alone, or socially, involving other equids or humans. We found that management restrictions were associated with corresponding tool use in 12 of the 13 cases (p = 0.01), e.g., equids using sticks to scrape hay within reach when feed was restricted. Furthermore, 8 of the 13 cases involved other equids or humans, such as horses using brushes to groom others. The most frequent tool use was for foraging, with seven examples, tool use for social purposes was seen in four cases, and there was just one case of tool use for escape. There was just one case of tool use for comfort, and in this instance, there were no management restrictions. Equids therefore can develop tool use, especially when management conditions are restricted, but it is a rare occurrence.
|
|
|
Nelson, X. J., & Fijn, N. (2013). The use of visual media as a tool for investigating animal behaviour. Animal Behaviour, 85(3), 525–536.
Abstract: In this essay we outline how video-related technology can be used as a tool for studying animal behaviour. We review particular aspects of novel, innovative animal behaviour uploaded by the general public via video-based media on the internet (using YouTube as a specific example). The behaviour of animals, particularly the play behaviour focused on here, is viewed by huge audiences. In this essay we focused on three different kinds of media clips: (1) interspecies play between dogs and a range of other species; (2) object play in horses; and (3) animal responses to stimuli presented on iPads, iPods and iPhones. We argue that the use of video is a good means of capturing uncommon or previously unknown behaviour, providing evidence that these behaviours occur. Furthermore, some of the behaviours featured on YouTube provide valuable insights for future directions in animal behaviour research. If we also take this opportunity to convey our knowledge to a public that seems to be fundamentally interested in animal behaviour, this is a good means of bridging the gap between knowledge among an academic few and the general public.
|
|
|
Sabou, M., Bontcheva, K., & Scharl, A. (2012). Crowdsourcing Research Opportunities: Lessons from Natural Language Processing. In Proceedings of the 12th International Conference on Knowledge Management and Knowledge Technologies (pp. 1–18). i-KNOW '12. New York, NY, USA: Acm.
|
|