|
Arakawa, H., Arakawa, K., Blanchard, D. C., & Blanchard, R. J. (2008). A new test paradigm for social recognition evidenced by urinary scent marking behavior in C57BL/6J mice. Behav. Brain. Res., 190(1), 97–104.
Abstract: Olfaction is a major sensory element in intraspecies recognition and communication in mice. The present study investigated scent marking behaviors of males of the highly inbred C57BL/6J (C57) strain in order to evaluate the ability of these behaviors to provide clear and consistent measures of social familiarity and response to social signals. C57 males engage in scent marking when placed in a chamber with a wire mesh partition separating them from a conspecific. Male mice (C57 or outbred CD-1 mice) showed rapid habituation of scent marking (decreased marking over trials) with repeated exposure at 24-h intervals, to a stimulus animal of the C57 or CD-1 strains, or to an empty chamber. Subsequent exposure to a genetically different novel mouse (CD-1 after CD-1 exposure, or CD-1 after C57 exposure) or to a novel context (different shaped chamber) produced recovery of marking, while responses to a novel but genetically identical mouse (C57 after C57 exposure) or to the empty chamber did not. This finding demonstrated that male mice differentiate familiar and novel conspecifics as expressed by habituation and recovery of scent marking, but neither C57 or CD-1 mice can differentiate new vs. familiar C57 males; likely due to similarities in their odor patterns. The data also indicate that scent marking can differentiate novel from familiar contexts.
|
|
|
Langbein, J., Nurnberg, G., Puppe, B., & Manteuffel, G. (2006). Self-Controlled Visual Discrimination Learning of Group-Housed Dwarf Goats (Capra hircus): Behavioral Strategies and Effects of Relocation on Learning and Memory. J. Comp. Psychol., 120(1), 58–66.
Abstract: In most studies on animal learning, individual animals are tested separately in a specific learning environment and with a limited number of trials per day. An alternative approach is to test animals in a familiar environment in their social group. In this study, the authors--applying a fully automated learning device--investigated voluntary, self-controlled visual shape discrimination learning of group-housed dwarf goats (Capra hircus). The majority of the tested goats showed successful shape discrimination, which indicates the adaptive value of an effective learning strategy. However, in each group, a few individual goats developed behavioral strategies different from shape discrimination to get reward. Relocation impairs memory retrieval (probably by attention shifting) only temporarily for previously learnt shapes. The results demonstrate the usefulness of a self-controlled learning paradigm to assess learning abilities of social species in their normal social settings. This may be especially relevant for captive animals to improve their welfare.
|
|