|
Barton, R. A., Byrne, R. W., & Whiten, A. (1996). Ecology, feeding competition and social structure in baboons. Behav. Ecol. Sociobiol., 38(5), 321–329.
Abstract: Predictions of the model of van Schaik (1989) of female-bonding in primates are tested by systematically comparing the ecology, level of within-group contest competition for food (WGC), and patterns of social behaviour found in two contrasting baboon populations. Significant differences were found in food distribution (percentage of the diet from clumped sources), feeding supplant rates and grooming patterns. In accord with the model, the tendencies of females to affiliate and form coalitions with one another, and to be philopatric, were strongest where ecological conditions promoted WGC. Group fission in the population with strong WGC was “horizontal” with respect to female dominance rank, and associated with female-female aggression during a period of elevated feeding competition. In contrast, where WGC was low, females' grooming was focused on adult males rather than other females. Recent evidence suggests that group fission here is initiated by males, tends to result in the formation of one-male groups, and is not related to feeding competition but to male-male competition for mates. An ecological model of baboon social structure is presented which incorporates the effects of female-female competition, male-male competition, and predation pressure. The model potentially accounts for wide variability in group size, group structure and social relationships within the genus Papio. Socio-ecological convergence between common baboons and hamadryas baboons, however, may be limited in some respects by phylogenetic inertia.
|
|
|
Boyce, P. N., & McLoughlin, P. D. (2021). Ecological Interactions Involving Feral Horses and Predators: Review with Implications for Biodiversity Conservation. Jour. Wild. Mgmt., n/a(n/a).
Abstract: ABSTRACT For many ecosystems, feral horses are increasingly becoming an important if not dominant component of ungulate biomass and hence influence on community dynamics. Yet we still know little of how horses contribute to key ecological interactions including predator-prey and indirect competitive relationships at a community level. Notably, feral species like horses can exhibit life-history traits that differ from that of native (mainly artiodactyl) herbivore competitors. Artificial selection for traits like increased, early, or extended reproduction that have yet to be reversed by natural selection, coupled with naturally selected differences in anatomy and behavior, in addition to unique management objectives for horses compared to other species, means that the dynamics of feral horse populations are not likely to align with what might be expected of other large herbivores. Unexpected population dynamics and inherent biological asymmetries between native ungulates and feral horses may therefore influence the former via direct competition for shared resources and through enemy-mediated interactions like apparent competition. In several localities feral horses now co-exist with multiple native prey species, some of which are in decline or are species at risk. Compounding risks to native species from direct or indirect competitive exclusion by horses is the unique nature and socio-political context of feral horse management, which tends towards allowing horse populations to be limited largely by natural, density-dependent factors. We summarize the inherent asymmetries between feral horse biology and that of other ungulate prey species with consequences for conservation, focusing on predator-prey and emerging indirect interactions in multi-prey systems, and highlight future directions to address key knowledge gaps in our understanding of how feral horses may now be contributing to the (re)structuring of food webs. Observations of patterns of rapid growth and decline, and associated skews in sex ratios of feral horse populations, indicate a heightened potential for indirect interactions among large ungulate prey species, where there is a prevalence of feral horses as preferred prey, particularly where native prey are declining. In places like western North America, we expect predator-prey interactions involving feral horses to become an increasingly important factor in the conservation of wildlife. This applies not only to economically or culturally important game species but also at-risk species, both predators (e.g., wolves [Canis lupus], grizzly bears [Ursus arctos]) and prey (e.g., woodland caribou [Rangifer tarandus caribou]), necessitating an ecological understanding of the role of horses in natural environments that goes beyond that of population control. ? 2021 The Wildlife Society.
|
|
|
Bräuer, J., Call, J., & Tomasello, M. (2008). Chimpanzees do not take into account what others can hear in a competitive situation. Anim. Cogn., 11(1), 1435–9448.
Abstract: Chimpanzees (Pan troglodytes) know what others can and cannot see in a competitive situation. Does this reflect a general understanding the perceptions of others` In a study by Hare et al. (2000) pairs of chimpanzees competed over two pieces of food. Subordinate individuals preferred to approach food that was behind a barrier that the dominant could not see, suggesting that chimpanzees can take the visual perspective of others. We extended this paradigm to the auditory modality to investigate whether chimpanzees are sensitive to whether a competitor can hear food rewards being hidden. Results suggested that the chimpanzees did not take what the competitor had heard into account, despite being able to locate the hiding place themselves by the noise.
|
|
|
Deutsch, J., & Lee, P. (1991). Dominance and feeding competition in captive rhesus monkeys. Int. J. Primatol., 12(6), 615–628.
Abstract: The feeding behavior of 16 adult female rhesus monkeys living in three captive social groups was observed. Estimates of relative food intake, feeding rate, and location of feeding in relation to food sources were compared between females of different dominance ranks. Higher-ranking females had greater access to feeding sites and were supplanted or threatened less frequently while feeding than subordinates. However, no consistent differences in estimates of total intake were found between females of high and females of low rank. The effects of dominance on feeding behavior were most pronounced in the group receiving the least food relative to estimates of overall group nutritional requirements. Higher-ranking females, both over the long term and during the study period, tended to produce more surviving offspring. The effects of dominance on reproductive performance appeared to be less related to food intake than to competitive and aggressive interactions, potentially resulting in higher levels of stress for subordinates.
|
|
|
Duncan, P., Foose, T. J., Gordon, I. J., Gakahu, C. G., & Lloyd, M. (1990). Comparative nutrient extraction from forages by grazing bovids and equids: a test of the nutritional model of equid/bovid competition and coexistence. Oecologia, 84(3), 411–418.
Abstract: Ruminants are unevenly distributed across the range of body sizes observed in herbivorous mammals; among extant East African species they predominate, in numbers and species richness, in the medium body sizes (10-600 kg). The small and the large species are all hind-gut fermenters. Some medium-sized hind-gut fermenters, equid perissodactyls, coexist with the grazing ruminants, principally bovid artiodactyls, in grassland ecosystems. These patterns have been explained by two complementary models based on differences between the digestive physiology of ruminants and hind-gut fermenters. The Demment and Van Soest (1985) model accounts for the absence of ruminants among the small and large species, while the Bell/Janis/Foose model accounts both for the predominance of ruminants, and their co-existence with equids among the medium-sized species (Bell 1971; Janis 1976; Foose 1982). The latter model assumes that the rumen is competitively superior to the hind-gut system on medium quality forages, and that hind-gut fermenters persist because of their ability to eat more, and thus to extract more nutrients per day from high fibre, low quality forages. Data presented here demonstrate that compared to similarly sized grazing ruminants (bovids), hind-gut fermenters (equids) have higher rates of food intake which more than compensate for their lesser ability to digest plant material. As a consequence equids extract more nutrients per day than bovids not only from low quality foods, but from the whole range of forages eaten by animals of this size. Neither of the current nutritional models, nor refinements of them satisfactorily explain the preponderance of the bovids among medium-sized ungulates; alternative hypotheses are presented.
|
|
|
Huizinga, H. A., Boukamp, M., & Smolders, G. (1990). Estimated parameters of field performance testing of mares from the Dutch Warmblood riding horse population. Livestock Production Science, 26(4), 291–299.
Abstract: The field performance testing (FPT) of mares of the Dutch Warmblood riding horse population is evaluated. Phenotypic and genetic parameters of scored traits are estimated and the genetic relationship with performance of half-sibs in dressage and jumping competition are estimated. Data from 1984 to 1987 are used, covering scores from 2023 at least 3-year-old mares. Seven subjectively scored traits are considered, walk, trot, canter, riding ability, character, jumping ability and total score. Analysis of data is according to a sire model. Variance and covariance components are estimated by Restricted Maximum Likelihood (REML) procedures. Estimates of heritability are moderately low for gaits (average 0.19), jumping ability (0.15) and total score (0.17) and extremely low for riding ability (0.03) and character (0.06). Dressage in competition is most correlated with riding ability (0.83) and is moderately correlated with total score (0.41) from FPT of mares. Jumping competition is most correlated with jumping ability (0.48) and not correlated with total score (0.05) from field test of mares. Some possible bias owing to previous knowledge and preselection is discussed. It is concluded that efficiency of present FPT of mares is limited for selection of broodmares for dressage and jumping ability in competition.
|
|
|
Kaminski, J., Pitsch, A., & Tomasello, M. (2013). Dogs steal in the dark. Animal Cognition, 16(3), 385–394.
Abstract: All current evidence of visual perspective taking in dogs can possibly be explained by dogs reacting to certain stimuli rather than understanding what others see. In the current study, we set up a situation in which contextual information and social cues are in conflict. A human always forbade the dog from taking a piece of food. The part of the room being illuminated was then varied, for example, either the area where the human was seated or the area where the food was located was lit. Results show that dogs steal significantly more food when it is dark compared to when it is light. While stealing forbidden food the dog’s behaviour also depends on the type of illumination in the room. Illumination around the food, but not the human, affected the dogs’ behaviour. This indicates that dogs do not take the sight of the human as a signal to avoid the food. It also cannot be explained by a low-level associative rule of avoiding illuminated food which dogs actually approach faster when they are in private. The current finding therefore raises the possibility that dogs take into account the human’s visual access to the food while making their decision to steal it.
|
|
|
Scordato, E. S., & Drea, C. M. (2007). Scents and sensibility: information content of olfactory signals in the ringtailed lemur, Lemur catta. Anim. Behav., 73(2), 301–314.
Abstract: The function of olfactory signalling in social species is less well understood than in asocial species. Consequently, we examined olfactory communication in the ringtailed lemur, a socially complex primate that retains a functional vomeronasal organ, has well-developed scent glands and shows a suite of scent-marking behaviour. To assess the information content of different types of scent gland secretions, we decoupled olfactory cues from the visual and behavioural modalities with which scent marking is normally associated. We presented male and female subjects (signal receivers) with a series of choice tests between odours derived from conspecific donors (signal senders) varying by sex, age, social status and reproductive condition. We additionally examined the influence of the receivers' reproductive state and familiarity with the signaller. The reproductive condition, social status and familiarity of senders and receivers affected signal transmission; specifically, male receivers attended most to the odours of conspecifics in breeding condition and to the odours of familiar, dominant animals. By contrast, females varied their responses according to both their own reproductive state and that of the sender. Based on male and female patterns of countermarking, we suggest that scent marking serves a function in intergroup spacing and intrasexual competition for both sexes, as might be expected in a female-dominant species. By contrast, minimal female interest in male odours counters a female mate choice function for scent marking in this species. Nevertheless, scent marks are critical to male-male competition and, therefore, may be subject to sexual selection.
|
|
|
Shrader, A. M., Kerley, G. I. H., Kotler, B. P., & Brown, J. S. (2007). Social information, social feding, and competition in group-living goats (Capra hircus). Behav. Ecol., 18(1), 103–107.
Abstract: There are both benefits (e.g., social information) and costs (e.g., intraspecific competition) for individuals foraging in groups. To ascertain how group-foraging goats (Capra hircus) deal with these trade-offs, we asked 1) do goats use social information to make foraging decisions and 2) how do they adjust their intake rate in light of having attracted by other group members? To establish whether goats use social information, we recorded their initial choice of different quality food patches when they were ignorant of patch quality and when they could observe others foraging. After determining that goats use social information, we recorded intake rates while they fed alone and in the presence of potential competitors. Intake rate increased as the number of competitors increased. Interestingly, lone goats achieved an intake rate that was higher than when one competitor was present but similar to when two or more competitors were present. Faster intake rates may allow herbivores to ingest a larger portion of the available food before competing group members arrive at the patch. This however, does not explain the high intake rates achieved when the goats were alone. We provide 2 potential explanations: 1) faster intake rates are a response to greater risk incurred by lone individuals, the loss of social information, and the fear of being left behind by the group and 2) when foraging alone, intake rate is no longer a trade-off between reducing competition and acquiring social information. Thus, individuals are able to feed close to their maximum rate.
|
|
|
Smith, J. E., Kolowski, J. M., Graham, K. E., Dawes, S. E., & Holekamp, K. E. (2008). Social and ecological determinants of fission-fusion dynamics in the spotted hyaena. Anim. Behav., 76(3), 619–636.
Abstract: Theory predicts that individuals living in fission-fusion societies, in which group members frequently change subgroups, should modify grouping patterns in response to varying social and environmental conditions. Spotted hyaenas, Crocuta crocuta, are long-lived carnivores that reside in permanent social groups called clans. Clans are complex, fission-fusion societies in which individual members travel, rest and forage in subgroups that frequently change composition. We studied two clans in Kenya to provide the first detailed description of fission-fusion dynamics in this species. Because social and ecological circumstances can influence the cohesiveness of animal societies, we evaluated the extent to which specific circumstances promote the formation of subgroups of various sizes. We found that cooperative defence of shared resources during interclan competition and protection from lions were cohesive forces that promoted formation of large subgroups. We also tested hypotheses suggesting factors limiting subgroup size. Mothers with small cubs avoided conspecifics, thereby reducing infanticide risk. Victims of aggression either reconciled fights or separated from former opponents to reduce the immediate costs of escalated aggression in the absence of food. As predicted by the ecological constraints hypothesis, hyaenas adjusted their grouping patterns over both short and long time scales in response to feeding competition. Crocuta were most gregarious during periods of abundant prey, joined clanmates at ephemeral kills in numbers that correlated with the energetic value of the prey and gained the most energy when foraging alone because cooperative hunting attracted numerous competitors. Overall, our findings indicate that resource limitation constrains grouping in this species.
|
|