|
Burton, A. C., Neilson, E., Moreira, D., Ladle, A., Steenweg, R., Fisher, J. T., et al. (2015). REVIEW: Wildlife camera trapping: a review and recommendations for linking surveys to ecological processes. J Appl Ecol, 52(3), 675–685.
Abstract: Summary Reliable assessment of animal populations is a long-standing challenge in wildlife ecology. Technological advances have led to widespread adoption of camera traps (CTs) to survey wildlife distribution, abundance and behaviour. As for any wildlife survey method, camera trapping must contend with sources of sampling error such as imperfect detection. Early applications focused on density estimation of naturally marked species, but there is growing interest in broad-scale CT surveys of unmarked populations and communities. Nevertheless, inferences based on detection indices are controversial, and the suitability of alternatives such as occupancy estimation is debatable. We reviewed 266 CT studies published between 2008 and 2013. We recorded study objectives and methodologies, evaluating the consistency of CT protocols and sampling designs, the extent to which CT surveys considered sampling error, and the linkages between analytical assumptions and species ecology. Nearly two-thirds of studies surveyed more than one species, and a majority used response variables that ignored imperfect detection (e.g. presence?absence, relative abundance). Many studies used opportunistic sampling and did not explicitly report details of sampling design and camera deployment that could affect conclusions. Most studies estimating density used capture?recapture methods on marked species, with spatially explicit methods becoming more prominent. Few studies estimated density for unmarked species, focusing instead on occupancy modelling or measures of relative abundance. While occupancy studies estimated detectability, most did not explicitly define key components of the modelling framework (e.g. a site) or discuss potential violations of model assumptions (e.g. site closure). Studies using relative abundance relied on assumptions of equal detectability, and most did not explicitly define expected relationships between measured responses and underlying ecological processes (e.g. animal abundance and movement). Synthesis and applications. The rapid adoption of camera traps represents an exciting transition in wildlife survey methodology. We remain optimistic about the technology's promise, but call for more explicit consideration of underlying processes of animal abundance, movement and detection by cameras, including more thorough reporting of methodological details and assumptions. Such transparency will facilitate efforts to evaluate and improve the reliability of camera trap surveys, ultimately leading to stronger inferences and helping to meet modern needs for effective ecological inquiry and biodiversity monitoring.
|
|
|
Meek, P. D., Ballard, G. - A., & Fleming, P. J. S. (2015). The pitfalls of wildlife camera trapping as a survey tool in Australia. Aust. Mammal., 37(1), 13–22.
Abstract: Camera trapping is a relatively new addition to the wildlife survey repertoire in Australia. Its rapid adoption has been unparalleled in ecological science, but objective evaluation of camera traps and their application has not kept pace. With the aim of motivating practitioners to think more about selection and deployment of camera trap models in relation to research goals, we reviewed Australian camera trapping studies to determine how camera traps have been used and how their technological constraints may have affected reported results and conclusions. In the 54 camera trapping articles published between 1991 and 2013, mammals (86%) were studied more than birds (10%) and reptiles (3%), with small to medium-sized mammals being most studied. Australian camera trapping studies, like those elsewhere, have changed from more qualitative to more complex quantitative investigations. However, we found that camera trap constraints and limitations were rarely acknowledged, and we identified eight key issues requiring consideration and further research. These are: camera model, camera detection system, camera placement and orientation, triggering and recovery, camera trap settings, temperature differentials, species identification and behavioural responses of the animals to the cameras. In particular, alterations to animal behaviour by camera traps potentially have enormous influence on data quality, reliability and interpretation. The key issues were not considered in most Australian camera trap papers and require further study to better understand the factors that influence the analysis and interpretation of camera trap data and improve experimental design.
|
|