|
Carmalt, J. L., Carmalt, K. P., & Barber, S. M. (2006). The effect of occlusal equilibration on sport horse performance. J Vet Dent, 23(4), 226–230.
Abstract: The objective of this study was to investigate the effect of routine dental occlusal equilibration treatment on dressage horse performance. Sixteen horses (11 treated; 5 untreated) ridden by a single rider performed a standardized dressage test twice and were scored by two experienced dressage judges according to recognized movements and rider cues. All horses were sedated and a full-mouth speculum was used to facilitate a complete oral examination. Treated horses had dental equilibration performed using a motorized dental instrument. The horses performed a second test 48-hours after dental equilibration, exactly as the baseline test, with the judges and rider blinded as to treatment group. The total test score as well as the individual movement scores were evaluated for equality of variance and statistical tests were applied to determine the influence of treatment. There was no significant improvement in the test score of horses that had received occlusal equilibration.
|
|
|
Houpt, K. A., Perry, P. J., Hintz, H. F., & Houpt, T. R. (1988). Effect of meal frequency on fluid balance and behavior of ponies. Physiol. Behav., 42(5), 401–407.
Abstract: Twelve ponies were fed their total daily ration either as one large meal or divided into six small meals. Pre- and post-feeding behavior was recorded six times a day. Blood samples were taken for 30 min before and two hr after the meal. Plasma protein increased from 7.0 to a peak of 7.3 g/dl with small meals and from 7.3 to 8.1 g/dl with large meals, and returned to pre-feeding levels by 90 min post-feeding. Hematocrit rose from 33.3 to 34.1% with small meals and from 33.0 to 36.0% with large meals. These rapid and short-lived increases indicate a decrease in plasma volume. Plasma osmolality rose with feeding from 283 to 285 mosmoles/kg with small meals and from 281 to 288 mosmoles/kg with large meals. Water availability had no significant effect on blood changes. Digestibility and rate of passage were measured with chromic oxide, but there were no differences. Vocalizing (neighing) and walking occurred more often before than after feeding, while eating bedding and engaging in other oral behaviors were more frequent after feeding.
|
|
|
Huebener, E. (Ed.). (2003). Fortschritt des Wissens zu Grundsitz und Schenkelhilfen und die “Entdeckung” der Bewegungen des Pferderückens und des Pferderumpfes.
Abstract: Tabellarische, chronologische übersicht zur Entwicklung des Grundsitzes durch fünf Jahrhunderte, wobei “Grundsitz” als Oberbegriff für verschiedene Formen des wirklich sitzenden “Hoch zu Roß” dient. Fehlentwicklungen (anstatt von Fortschritten, nur in Ausnahmefällen erwähnt)sind fett kursiv als solche gekennzeichnet.
|
|
|
Krueger, K., Schwarz, S., Marr, I., & Farmer, K. (2022). Laterality in Horse Training: Psychological and Physical Balance and Coordination and Strength Rather Than Straightness. Animals, 12(8), 1042.
Abstract: For centuries, a goal of training in many equestrian disciplines has been to straighten the horse, which is considered a key element in achieving its responsiveness and suppleness. However, laterality is a naturally occurring phenomenon in horses and encompasses body asymmetry, motor laterality and sensory laterality. Furthermore, forcibly counterbalancing motor laterality has been considered a cause of psychological imbalance in humans. Perhaps asymmetry and laterality should rather be accepted, with a focus on training psychological and physical balance, coordination and equal strength on both sides instead of enforcing “straightness”. To explore this, we conducted a review of the literature on the function and causes of motor and sensory laterality in horses, especially in horses when trained on the ground or under a rider. The literature reveals that body asymmetry is innate but does not prevent the horse from performing at a high level under a rider. Motor laterality is equally distributed in feral horses, while in domestic horses, age, breed, training and carrying a rider may cause left leg preferences. Most horses initially observe novel persons and potentially threatening objects or situations with their left sensory organs. Pronounced preferences for the use of left sensory organs or limbs indicate that the horse is experiencing increased emotionality or stress, and long-term insufficiencies in welfare, housing or training may result in left shifts in motor and sensory laterality and pessimistic mentalities. Therefore, increasing laterality can be regarded as an indicator for insufficiencies in housing, handling and training. We propose that laterality be recognized as a welfare indicator and that straightening the horse should be achieved by conducting training focused on balance, coordination and equal strength on both sides.
|
|
|
Maloney, S. J. (2019). The Relationship Between Asymmetry and Athletic Performance: A Critical Review. The Journal of Strength & Conditioning Research, 33(9).
Abstract: Maloney, SJ. The relationship between asymmetry and athletic performance: A critical review. J Strength Cond Res 33(9): 2579-2593, 2019--Symmetry may be defined as the quality to demonstrate an exact correspondence of size, shape, and form when split along a given axis. Although it has been widely asserted that the bilateral asymmetries are detrimental to athletic performance, research does not wholly support such an association. Moreover, the research rarely seeks to distinguish between different types of bilateral asymmetry. Fluctuating asymmetries describe bilateral differences in anthropometric attributes, such as nostril width and ear size, and are thought to represent the developmental stability of an organism. There is evidence to suggest that fluctuating asymmetries may be related to impaired athletic performance, although contradictory findings have been reported. Sporting asymmetries is a term that may better describe bilateral differences in parameters, such as force output or jump height. These asymmetries are likely to be a function of limb dominance and magnified by long-standing participation within sport. Sporting asymmetries do not seem to carry a clear influence on athletic performance measures. Given the vast discrepancy in the methodologies used by different investigations, further research is warranted. Recent investigations have demonstrated that training interventions can reduce sporting asymmetries and improve performance. However, studies have not sought to determine whether the influence of sporting asymmetry is independent of improvements in neuromuscular parameters. It may be hypothesized that the deficient (weaker) limb has a greater potential for adaptation in comparison to the strong limb and may demonstrate greater responsiveness to training.
|
|
|
Nyman, S., & Dahlborn, K. (2001). Effect of water supply method and flow rate on drinking behavior and fluid balance in horses. Physiol. Behav., 73(1-2), 1–8.
Abstract: This study investigated three methods of water supply on drinking preference and behavior in six Standardbred geldings (2-9 years, 505+/-9 kg). The water sources were buckets (B), pressure valve (PV), and float valve (FV) bowls. In an initial drinking preference test, PV was tested at three flow rates: 3, 8, and 16 l/min (PV3, PV8, and PV16), and FV at 3 l/min (FV3). Water intake was measured in l and presented as the percentage of the total daily water intake from each of two simultaneously presented alternatives. The intake from PV8 was greater than from both PV3 (72+/-11% vs. 28+/-11%) and PV16 (90+/-4% vs. 10+/-4%). All horses showed a strong preference for B, 98+/-1% of the intake compared to 2+/-1% from PV8. Individual variation in the data gave no significant difference in preference between the two automatic bowls. In the second part of the study, drinking behavior and fluid balance were investigated when the horses drank from FV3, PV8, and B for 7 consecutive days in a changeover design. Despite a tendency for an increase in total daily drinking time from FV3, the daily water intake was significantly lower (43+/-3 ml/kg) than from PV8 (54+/-2 ml/kg) and B (58+/-3 ml/kg). Daily net water gain [intake-(fecal+urinary output)] was only 0.5+/-3 ml/kg with FV3, resulting in a negative fluid balance if insensible losses are included. These results show that the water supply method can affect both drinking behavior and fluid balance in the horse.
|
|
|
Sloet van Oldruitenborgh-Oosterbaan, M. M., Spierenburg, A. J., & van den Broek, E. T. W. (2006). The workload of riding-school horses during jumping.
Abstract: REASONS FOR PERFORMING THE STUDY: As there are no reports on the real workload of horses that jump fences, this study was undertaken in riding-school horses. OBJECTIVE: To compare the workload of horses jumping a course of fences with that of horses cantering over the same course at the same average speed without jumping fences. The workload variables included heart rate (HR), packed cell volume (PCV), acid-base balance (venous pH, pCO2, HCO3-) and blood lactate (LA), glucose, total protein and electrolyte concentrations. METHODS: Eight healthy riding-school horses performed test A (a course of approximately 700 m with 12 jumps from 0.8-1.0 m high at an average speed of approximately 350 m/min) and test B (same course at the same speed, but without the rails) in a crossover study with at least 4 h between the 2 tests. Before each test the horses were fitted with a heart rate meter (Polar Electro). Blood samples were taken from the jugular vein at rest prior to the test, after warm-up before starting the course, immediately after the course and after recovery. All samples were analysed immediately. RESULTS: The mean +/- s.d maximal HR (beats/min) during the course (184 +/- 17 and 156 +/- 21, respectively) and the mean HR after recovery (75 +/- 6 and 63 +/- 7, respectively) were significantly higher in test A compared to test B (P = 0.001 and P = 0.007 respectively). The mean LA concentrations after the course and after recovery (mmol/l) were significantly higher in test A (3.6 +/- 2.7 and 1.0 +/- 0.9, respectively) compared to test B (0.9 +/- 0.5 and 0.3 +/- 0.1, respectively), (P = 0.016 and P = 0.048 respectively). The mean PCV (I/l) after the course and after recovery was also significantly different between tests A (0.48 +/- 0.04 and 0.39 +/- 0.03, respectively) and B (0.42 +/- 0.04 and 0.36 +/- 0.03, respectively) (P<0.01). The mean pH and the mean HCO3- (mmol/l) after the course were significantly lower in test A (7.40 +/- 0.04 and 28.9 +/- 1.4, respectively) compared to test B (7.45 +/- 0.03 and 30.4 +/- 2.3, respectively) (P<0.05). CONCLUSIONS: This study indicates that in riding-school horses jumping fences, even at a low level competition, provokes a significant workload compared to cantering the same distance and speed without fences. POTENTIAL RELEVANCE: This study makes it clear that the extra workload of jumping fences should be taken into account in the training programmes of jumping horses. Further research with more experienced horses jumping higher fences will reveal the workload for top-level jumping horses.
|
|