|
Hopkins, W. D., Taglialatela, J. P., & Leavens, D. A. (2007). Chimpanzees differentially produce novel vocalizations to capture the attention of a human. Anim. Behav., 73(2), 281–286.
Abstract: Chimpanzees, Pan troglodytes, produce numerous species-atypical signals when raised in captivity. We examined contextual elements of the use of two of these vocal signals, the `raspberry' and the extended grunt. Our results demonstrate that these vocalizations are not elicited by the presence of food, but instead function as attention-getting signals. These findings reveal a heretofore underappreciated category of animal signals: attention-getting sounds produced in novel environmental circumstances. The invention and use of species-atypical signals, considered in relation to group differences in signalling repertoires in apes in their natural habitats, may index a generative capacity in these hominoid species without obvious corollary in other primate species.
|
|
|
Lingle, S., Rendall, D., & Pellis, S. M. (2007). Altruism and recognition in the antipredator defence of deer: 1. Species and individual variation in fawn distress calls. Anim. Behav., 73(5), 897–905.
Abstract: Mule deer, Odocoileus hemionus, females actively defend fawns against predators, including nonoffspring conspecific fawns and heterospecific white-tailed deer, O. virginianus, fawns. We hypothesized that the defence of nonoffspring fawns was due to a recognition error. During a predator attack, females may have to decide whether to defend a fawn with imperfect information on its identity obtained from hearing only a few distress calls. We examined fawn distress calls to determine whether calls made by the two species and by different individuals within each species were acoustically distinctive. The mean and maximum fundamental frequencies of mule deer fawns were nearly double those of white-tailed deer fawns, with no overlap, enabling us to classify 100% of calls to the correct species using a single trait. A large proportion of calls was also assigned to the correct individual using a multivariate analysis (66% and 70% of mule deer and white-tailed deer fawns, respectively, chance = 6% and 10%); however, there was considerable statistical uncertainty in the probability of correct classification. We observed fawns approach conspecific females in an attempt to nurse; females probed most offspring fawns with their noses before accepting them, and always probed nonoffspring fawns before rejecting them, suggesting that close contact and olfactory information were needed to unequivocally distinguish nonoffspring from offspring fawns. Taken together, these results suggest that acoustic variation alone would probably be sufficient to permit rapid and reliable species discrimination, but it may not be sufficient for mothers to unequivocally distinguish their own fawn from conspecific fawns.
|
|