|
Baragli, P., Cozzi, A., Rugani, R., Sighieria, C., & Regolin, L. (2008). Delayed search for non-social goals by Equids (Equus caballus and Equus asinus). In IESM 2008.
Abstract: Delayed-responses have been traditionally employed to investigate the temporal characteristics of animals“ ability to represent and recall objects that have disappeared. In the typical condition, the animal, usually a mammal, observes the experimenter hiding an interesting goal (e.g. some food) in a certain location. A delayed-response task (DRT) was administered to 4 female Esperia pony (2 years old) coming from a free-range breed (Frosinone, Italy) and to 7 female Amiata donkeys (4.2±2 years old) coming from a conservation stock (University of Pisa, Italy). The DRT's apparatus was located in a square fence. A single ”U-shaped“ screen (330x160x140 cm) made by wood shavings blocks was positioned in the centre of the fence. A gap (40x50 cm) on the ground was in the middle of the central side of the U-shaped-screen and served to make the food-attractor disappear. The food-attractor consisted in cereal flakes and fresh grass for ponies and cereal flakes for donkeys. A bucket full of food was placed on a dolly tied on a rope which could be pulled by an experimenter. In a preliminary training each animal was allowed to eat food from the bucket and, while the animal was eating, the dolly was gently pulled away from the animal, and beyond the screen through the gap. The subjects needed to move around of the screen in order to retrieve the food. As a reinforcement, they were allowed to eat some food from the bucket once behind the screen. From trial to trial, the bucket was presented farther and farther (starting with a distance of 1 m in front of the screen to reach 7 m). Therefore subjects were tested in the DRT requiring them to rejoin the bucket with the goal-food disappearing behind the screen as in the preliminary training but following a 10 s delay. For the DRT, the bucket was placed 7 m in front of the screen, 3 m away from the animal's starting area. Then the dolly was pulled away from the animal. Ten seconds after the disappearance of the dolly behind the screen the animal was released from the starting area. The DRT ended when the subject had reached the attractor behind the screen on 3 consecutive trials. Results showed that all animals were able to rejoin the food behind the screen after 10 s delay. The mean time of the delayed-response (mean±sd, in s) in the ponies (1st: 19.8±8; 2nd: 10.8±2.2; 3rd: 12.8±2.8) and in the donkeys (1st: 28.4±10; 2nd: 26.9±13; 3rd: 24.3±16.6) showed a trend to decrease from first trial to third. These preliminary results suggest that like other mammals our ponies and donkeys can maintain a working memory trace of the location where biologically attractive objects have been seen to disappear. In conclusion, this study paves the way to set up a viable model system for the investigation of the more sophisticated aspects of Equids” cognitive abilities such as working memory.
|
|
|
Benz, B., Köhnke, J., & Kappelmann, K. (2014). Bewertung einer Faltschieberanlage in einem Reitstall mit Paddockboxen[Assessment of a v-form scraper in a horse barn with paddock boxes]. Landtechnik, Agricultural Engineering,, 68(4), 242–247.
Abstract: In der vorliegenden Untersuchung werden in einem Praxisbetrieb die Verfahrenskosten eines
Faltschiebers erhoben. Aufgrund des reduzierten Arbeitszeitaufwandes ergibt sich durch den
Einsatz des Faltschiebers eine jährliche Kostenersparnis in Höhe von 78 € je Pferd. Durch die
Mechanisierung der Entmistung kann fast 30 % der Arbeitszeit in der Pensionspferdehaltung
eingespart werden. Beim Einsatz einer Entmistungstechnik spielt jedoch nicht nur die Ökonomie,
sondern darüber hinaus auch das Pferdeverhalten eine Rolle. Im selben Praxisbetrieb wird
nach Installation der Faltschieberanlage das Pferdeverhalten beim Erstkontakt mit dem Schieber
beobachtet. Dabei zeigt sich, dass die Pferde den direkten Kontakt mit der Entmistungstechnik
und somit kritische Situationen vermeiden.
[In the survey at hand, the procedural costs for a v-form scraper are gathered. In the process,
it is found that due to the reduced working time requirement the use of a v-form scraper
saves € 78/horse/year. The mechanization of manure removal can reduce working time in
horse keeping by almost 30 percent. However, using manure removal systems, the profitability
is not the only crucial criteria. The behaviour of the horses plays an essential role, too.
Moreover the horses’ behaviour when first encountering the manure scraper is observed. The
study reveals that the horses avoid contact with the scraper and thereby also shirk critical
situations.]
|
|
|
Bode, N. W. F., Wood, A. J., & Franks, D. W. (2011). The impact of social networks on animal collective motion. Anim. Behav., 82(1), 29–38.
Abstract: Many group-living animals show social preferences for relatives, familiar conspecifics or individuals of similar attributes such as size, personality or sex. How such preferences could affect the collective motion of animal groups has been rather unexplored. We present a general model of collective animal motion that includes social connections as preferential reactions between individuals. Our conceptual examples illustrate the possible impact of underlying social networks on the collective motion of animals. Our approach shows that the structure of these networks could influence: (1) the cohesion of groups; (2) the spatial position of individuals within groups; and (3) the hierarchical dynamics within such groups. We argue that the position of individuals within a social network and the social network structure of populations could have important fitness implications for individual animals. Counterintuitive results from our conceptual examples show that social structures can result in unexpected group dynamics. This sharpens our understanding of the way in which collective movement can be interpreted as a result of social interactions.
|
|
|
Boogert, N. J., Reader, S. M., Hoppitt, W., & Laland, K. N. (2008). The origin and spread of innovations in starlings. Anim. Behav., 75(4), 1509–1518.
Abstract: There are numerous reports of novel learned behaviour patterns in animal populations, yet the factors influencing the invention and spread of these innovations remain poorly understood. Here we investigated to what extent the pattern of spread of innovations in captive groups of starlings, Sturnus vulgaris, could be predicted by knowledge of individual and social group variables, including association patterns, social rank orders, measures of neophobia and asocial learning performance. We presented small groups of starlings with a series of novel extractive foraging tasks and recorded the latency for each bird to contact and solve each task, as well as the orders of contacting and solving. We then explored which variables best predicted the observed diffusion patterns. Object neophobia and social rank measures characterized who was the first of the group to contact the novel foraging tasks, and the subsequent spread of contacting tasks was associated with latency to feed in a novel environment. Asocial learning performance, measured in isolation, predicted who was the first solver of the novel foraging tasks in each group. Association patterns did not predict the spread of solving. Contact latency and solving duration were negatively correlated, consistent with social learning underlying the spread of solving. Our findings indicate that we can improve our understanding of the diffusion dynamics of innovations in animal groups by investigating group-dependent and individual variables in combination. We introduce novel methods for exploring predictors of the origin and spread of behavioural innovations that could be widely applied.
|
|
|
Briard, L., Dorn, C., & Petit, O. (2015). Personality and Affinities Play a Key Role in the Organisation of Collective Movements in a Group of Domestic Horses. Ethology, 121(9), 888–902.
Abstract: Understanding how groups of individuals with different motives come to daily decisions about the exploitation of their environment is a key question in animal behaviour. While interindividual differences are often seen only as a threat to group cohesion, growing evidence shows that they may to some extent facilitate effective collective action. Recent studies suggest that personality differences influence how individuals are attracted to conspecifics and affect their behaviour as an initiator or a follower. However, most of the existing studies are limited to a few taxa, mainly social fish and arthropods. Horses are social herbivores that live in long-lasting groups and show identifiable personality differences between individuals. We studied a group of 38 individuals living in a 30-ha hilly pasture. Over 200 h, we sought to identify how far individual differences such as personality and affinity distribution affect the dynamic of their collective movements. First, we report that individuals distribute their relationships according to similar personality and hierarchical rank. This is the first study that demonstrates a positive assortment between unrelated individuals according to personality in a mammal species. Second, we measured individual propensity to initiate and found that bold individuals initiated more often than shy individuals. However, their success in terms of number of followers and joining duration did not depend on their individual characteristics. Moreover, joining process is influenced by social network, with preferred partners following each other and bolder individuals being located more often at the front of the movement. Our results illustrate the importance of taking into account interindividual behavioural differences in studies of social behaviours.
|
|
|
Crystal, J. D. (1999). Systematic nonlinearities in the perception of temporal intervals. J Exp Psychol Anim Behav Process, 25(1), 3–17.
Abstract: Rats judged time intervals in a choice procedure in which accuracy was maintained at approximately 75% correct. Sensitivity to time (d') was approximately constant for short durations 2.0-32.0 s with 1.0- or 2.0-s spacing between intervals (n = 5 in each group, Experiment 1), 2.0-50.0 s with 2.0-s spacing (n = 2, Experiment 1), and 0.1-2.0 s with 0.1- or 0.2-s spacing (n = 6 in each group, Experiment 2). However, systematic departures from average sensitivity were observed, with local maxima in sensitivity at approximately 0.3, 1.2, 10.0, 24.0, and 36.0 s. Such systematic departures from an approximately constant d' are predicted by a connectionist theory of time with multiple oscillators and may require a modification of the linear timing hypothesis of scalar timing theory.
|
|
|
Hasenjager, M. J., & Dugatkin, L. A. Social Network Analysis in Behavioral Ecology. Advances in the Study of Behavior. Academic Press.
Abstract: Abstract In recent years, behavioral ecologists have embraced social network analysis (SNA) in order to explore the structure of animal societies and the functional consequences of that structure. We provide a conceptual introduction to the field that focuses on historical developments, as well as on novel insights generated by recent work. First, we discuss major advances in the analysis of nonhuman societies, culminating in the use of SNA by behavioral ecologists. Next, we discuss how network-based approaches have enhanced our understanding of social structure and behavior over the past decade, focusing on: (1) information transmission, (2) collective behaviors, (3) animal personality, and (4) cooperation. These behaviors and phenomena possess several features—e.g., indirect effects, emergent properties—that network analysis is well equipped to handle. Finally, we highlight recent developments in SNA that are allowing behavioral ecologists to address increasingly sophisticated questions regarding the structure and function of animal sociality.
|
|
|
Krause, J., Croft, D., & James, R. (2007). Social network theory in the behavioural sciences: potential applications. Behav. Ecol. Sociobiol., 62(1), 15–27.
Abstract: Abstract Social network theory has made major contributions to our understanding of human social organisation but has found relatively little application in the field of animal behaviour. In this review, we identify several broad research areas where the networks approach could greatly enhance our understanding of social patterns and processes in animals. The network theory provides a quantitative framework that can be used to characterise social structure both at the level of the individual and the population. These novel quantitative variables may provide a new tool in addressing key questions in behavioural ecology particularly in relation to the evolution of social organisation and the impact of social structure on evolutionary processes. For example, network measures could be used to compare social networks of different species or populations making full use of the comparative approach. However, the networks approach can in principle go beyond identifying structural patterns and also can help with the understanding of processes within animal populations such as disease transmission and information transfer. Finally, understanding the pattern of interactions in the network (i.e. who is connected to whom) can also shed some light on the evolution of behavioural strategies.
|
|
|
Lusseau, D., Whitehead, H., & Gero, S. (2008). Incorporating uncertainty into the study of animal social networks. Anim. Behav., 75(5), 1809–1815.
|
|
|
Newman, M. E. J. (2003). The Structure and Function of Complex Networks. SIAM Rev., 45(2), 167–256.
Abstract: Inspired by empirical studies of networked systems such as the Internet, social networks, and biological networks, researchers have in recent years developed a variety of techniques and models to help us understand or predict the behavior of these systems. Here we review developments in this field, including such concepts as the small-world effect, degree distributions, clustering, network correlations, random graph models, models of network growth and preferential attachment, and dynamical processes taking place on networks.
|
|