|
Harman, A. M., Moore, S., Hoskins, R., & Keller, P. (1999). Horse vision and an explanation for the visual behaviour originally explained by the 'ramp retina'. Equine Vet J, 31(5), 384–390.
Abstract: Here we provide confirmation that the 'ramp retina' of the horse, once thought to result in head rotating visual behaviour, does not exist. We found a 9% variation in axial length of the eye between the streak region and the dorsal periphery. However, the difference was in the opposite direction to that proposed for the 'ramp retina'. Furthermore, acuity in the narrow, intense visual streak in the inferior retina is 16.5 cycles per degree compared with 2.7 cycles per degree in the periphery. Therefore, it is improbable that the horse rotates its head to focus onto the peripheral retina. Rather, the horse rotates the nose up high to observe distant objects because binocular overlap is oriented down the nose, with a blind area directly in front of the forehead.
|
|
|
Timney, B., & Keil, K. (1992). Visual acuity in the horse. Vis. Res., 32(12), 2289–2293.
Abstract: We assessed the ease with which horses could learn visual discriminations and measured their resolution acuity. We trained three horses to press their noses against one of two large wooden panels to receive a small food reward. Following training on a series of two-choice discrimination tasks, resolution acuity was measured. Although there was some variability between animals, the best acuity obtained was 23.3 c deg-1. Within the margin of error imposed by limited anatomical data, the obtained values are consistent with predictions based on retinal ganglion cell density estimates and posterior nodal distance/axial length ratios. They suggest that the resolution acuity of the horse is limited by ganglion cell density in the temporal portion of the narrow visual streak.
|
|