|
Hall, C. A., Cassaday, H. J., & Derrington, A. M. (2003). The effect of stimulus height on visual discrimination in horses. J. Anim Sci., 81(7), 1715–1720.
Abstract: This study investigated the effect of stimulus height on the ability of horses to learn a simple visual discrimination task. Eight horses were trained to perform a two-choice, black/white discrimination with stimuli presented at one of two heights: ground level or at a height of 70 cm from the ground. The height at which the stimuli were presented was alternated from one session to the next. All trials within a single session were presented at the same height. The criterion for learning was four consecutive sessions of 70% correct responses. Performance was found to be better when stimuli were presented at ground level with respect to the number of trials taken to reach the criterion (P < 0.05), percentage of correct first choices (P < 0.01), and repeated errors made (P < 0.01). Thus, training horses to carry out tasks of visual discrimination could be enhanced by placing the stimuli on the ground. In addition, the results of the present study suggest that the visual appearance of ground surfaces is an important factor in both horse management and training.
|
|
|
Harman, A. M., Moore, S., Hoskins, R., & Keller, P. (1999). Horse vision and an explanation for the visual behaviour originally explained by the 'ramp retina'. Equine Vet J, 31(5), 384–390.
Abstract: Here we provide confirmation that the 'ramp retina' of the horse, once thought to result in head rotating visual behaviour, does not exist. We found a 9% variation in axial length of the eye between the streak region and the dorsal periphery. However, the difference was in the opposite direction to that proposed for the 'ramp retina'. Furthermore, acuity in the narrow, intense visual streak in the inferior retina is 16.5 cycles per degree compared with 2.7 cycles per degree in the periphery. Therefore, it is improbable that the horse rotates its head to focus onto the peripheral retina. Rather, the horse rotates the nose up high to observe distant objects because binocular overlap is oriented down the nose, with a blind area directly in front of the forehead.
|
|