|
Crowell-Davis, S. L., & Houpt, K. A. (1985). Coprophagy by foals: effect of age and possible functions. Equine Vet J, 17(1), 17–19.
Abstract: In colts and fillies observed from birth to 24 weeks old, coprophagy occurred from Weeks 1 to 19. Its frequency was greatest during the first two months. Coprophagy was rarely observed in mares and stallions. Foals usually ate the faeces of their mother but were observed to eat their own and those of a stallion and another unrelated mare. Urination by the foal occurred before, during or after 26 per cent of the coprophagy incidents. It is hypothesised that foals may consume faeces in response to a maternal pheromone which signals the presence of deoxycholic acid or other acids which the foal may be deficient in and which it may require for gut immuno-competence myelination of the nervous system. Such a pheromone may also serve to accelerate growth and sexual maturation. Coprophagy may also provide nutrients and introduce normal bacterial flora to the gut.
|
|
|
Heath-Lange, S., Ha, J. C., & Sackett, G. P. (1999). Behavioral measurement of temperament in male nursery-raised infant macaques and baboons. Am. J. Primatol., 47(1), 43–50.
Abstract: We define temperament as an individual's set of characteristic behavioral responses to novel or challenging stimuli. This study adapted a temperament scale used with rhesus macaques by Schneider and colleagues [American Journal of Primatology 25:137-155, 1991] for use with male pigtailed macaque (Macaca nemestrina, n = 7), longtailed macaque (M. fascicularis, n = 3), and baboon infants (Papio cynocephalus anubis, n = 4). Subjects were evaluated twice weekly for the first 5 months of age during routine removal from their cages for weighing. Behavioral measures were based on the subject's interactions with a familiar human caretaker and included predominant state before capture, response to capture, contact latency, resistance to tester's hold, degree of clinging, attention to environment, defecation/urination, consolability, facial expression, vocalizations, and irritability. Species differences indicated that baboons were more active than macaques in establishing or terminating contact with the tester. Temperament scores decreased over time for the variables Response to Capture and Contact Latency, indicating that as they grew older, subjects became less reactive and more bold in their interactions with the tester. Temperament scores changed slowly with age, with greater change occurring at younger ages. The retention of variability in reactivity between and within species may be advantageous for primates, reflecting the flexibility necessary to survive in a changing environment.
|
|
|
Trim, C. M., Moore, J. N., & Clark, E. S. (1989). Renal effects of dopamine infusion in conscious horses. Equine Vet J Suppl, (7), 124–128.
Abstract: An ultrasonic flow probe was implanted around a branch of the left renal artery in five horses. The effects of dopamine were studied in the unsedated horses 10 days after surgery. Three experiments, separated by at least two days, were performed in random order on each horse. In two experiments, dopamine was infused intravenously for 60 mins at either 2.5 and 5.0 micrograms/kg bodyweight (bwt)/min. Saline was infused for 60 mins before and after each infusion, and for 180 mins in the third experiment as a control. Renal blood flow increased during administration of dopamine at both dose rates (P = 0.0001). Urine volume increased (P = 0.055), and osmolality decreased (P < 0.05), with infusion of dopamine at 5.0 micrograms/kg bwt/min. Arterial blood pressure and heart rate were not significantly affected. Fractional excretions of sodium and potassium were not significantly changed with dopamine infusion. The higher dopamine dose rate was accompanied by dysrhythmias in some horses.
|
|