|
Beran, M. J. (2007). Rhesus monkeys (Macaca mulatta) succeed on a computerized test designed to assess conservation of discrete quantity. Anim. Cogn., 10(1), 37–45.
Abstract: Conservation of quantity occurs through recognition that changes in the physical arrangement of a set of items do not change the quantity of items in that set. Rhesus monkeys (Macaca mulatta) were presented with a computerized quantity judgment task. Monkeys were rewarded for selecting the greater quantity of items in one of two horizontal arrays of items on the screen. On some trials, after a correct selection, no reward was given but one of the arrays was manipulated. In some cases, this manipulation involved moving items closer together or farther apart to change the physical arrangement of the array without changing the quantity of items in the array. In other cases, additional items were added to the initially smaller array so that it became quantitatively larger. Monkeys then made another selection from the two rows of items. Monkeys were sensitive to these manipulations, changing their selections when the number of items in the rows changed but not when the arrangement only was changed. Therefore, monkeys responded on the basis of the quantity of items, and they were not distracted by non-quantitative manipulations of the sets.
|
|
|
Beran, M. J., Smith, J. D., Redford, J. S., & Washburn, D. A. (2006). Rhesus macaques (Macaca mulatta) monitor uncertainty during numerosity judgments. J Exp Psychol Anim Behav Process, 32(2), 111–119.
Abstract: Two rhesus macaques (Macaca mulatta) judged arrays of dots on a computer screen as having more or fewer dots than a center value that was never presented in trials. After learning a center value, monkeys were given an uncertainty response that let them decline to make the numerosity judgment on that trial. Across center values (3-7), errors occurred most often for sets adjacent in numerosity to the center value. The monkeys also used the uncertainty response most frequently on these difficult trials. A 2nd experiment showed that monkeys' responses reflected numerical magnitude and not the surface-area illumination of the displays. This research shows that monkeys' uncertainty-monitoring capacity extends to the domain of numerical cognition. It also shows monkeys' use of the purest uncertainty response possible, uncontaminated by any secondary motivator.
|
|
|
Washburn, D. A., Smith, J. D., & Shields, W. E. (2006). Rhesus monkeys (Macaca mulatta) immediately generalize the uncertain response. J Exp Psychol Anim Behav Process, 32(2), 185–189.
Abstract: Rhesus monkeys (Macaca mulatta) have learned, like humans, to use an uncertain response adaptively under test conditions that create uncertainty, suggesting a metacognitive process by which human and nonhuman primates may monitor their confidence and alter their behavior accordingly. In this study, 4 rhesus monkeys generalized their use of the uncertain response, without additional training, to 2 familiar tasks (2-choice discrimination learning and mirror-image matching to sample) that predictably and demonstrably produce uncertainty. The monkeys were significantly less likely to use the uncertain response on trials in which the answer might be known. These results indicate that monkeys, like humans, know when they do not know and that they can learn to use a symbol as a generalized means for indicating their uncertainty.
|
|