|
Hutchinson, G. W., Abba, S. A., & Mfitilodze, M. W. (1989). Seasonal translation of equine strongyle infective larvae to herbage in tropical Australia. Vet Parasitol, 33(3-4), 251–263.
Abstract: Longevity in faeces, migration to and survival on herbage of mixed strongyle infective larvae (approximately 70% cyathostomes: 30% large strongyles) from experimentally deposited horse faeces was studied in the dry tropical region of North Queensland for up to 2 years. Larvae were recovered from faeces deposited during hot dry weather for a maximum of 12 weeks, up to 32 weeks in cool conditions, but less than 8 weeks in hot wet summer. Translation to herbage was mainly limited to the hot wet season (December-March), except when unseasonal winter rainfall of 40-50 mm per month in July and August allowed some additional migration. Survival on pasture was estimated at 2-4 weeks in the summer wet season and 8-12 weeks in the autumn-winter dry season (April-August). Hot dry spring weather (pre-wet season) was the most unfavourable for larval development, migration and survival. Peak counts of up to 60,000 larvae kg-1 dry herbage were recorded. The seasonal nature of pasture contamination allowed the development of rational anthelmintic control programs based on larval ecology.
|
|
|
Marlin, D. J., Schroter, R. C., White, S. L., Maykuth, P., Matthesen, G., Mills, P. C., et al. (2001). Recovery from transport and acclimatisation of competition horses in a hot humid environment. Equine Vet J, 33(4), 371–379.
Abstract: The aims of the present field-based study were to investigate changes in fit horses undergoing acclimatisation to a hot humid environment and to provide data on which to base recommendations for safe transport and acclimatisation. Six horses (age 7-12 years) were flown from Europe to Atlanta and underwent a 16 day period of acclimatisation. Exercise conditions during acclimatisation (wet bulb globe temperature index 27.6+/-0.0 [mean +/- s.e.]) were more thermally stressful compared with the European climate from which the horses had come (22.0+/-1.8, P<0.001). Following the flight, weight loss was 4.1+/-0.8% bodyweight and took around 7 days to recover. Water intake during the day was significantly increased (P<0.05) compared with night during acclimatisation. Daily mean exercise duration was 72+/-12 min and the majority of work was performed with a heart rate below 120 beats/min. Respiratory rate (fR) was increased (P<0.05) throughout acclimatisation compared with in Europe, but resting morning (AM) and evening (PM) rectal temperature (TREC), heart rate (fC) and plasma volume were unchanged. White blood cell (WBC) count was significantly increased at AM compared with in Europe on Days 4 and 10 of acclimatisation (P<0.01), but was not different by Day 16. In conclusion, horses exposed to hot humid environmental conditions without prior acclimatisation are able to accommodate these stresses and, with appropriate management, remain fit and clinically healthy, without significant risk of heat illness or heat-related disorders, provided they are allowed sufficient time to recover from transport, acclimatisation is undertaken gradually and they are monitored appropriately.
|
|
|
Scherer, W. F., Dickerman, R. W., & Ordonez, J. V. (1970). Discovery and geographic distribution of Venezuelan encephalitis virus in Guatemala, Honduras, and British Honduras during 1965-68, and its possible movement to Central America and Mexico. Am J Trop Med Hyg, 19(4), 703–711.
|
|