|
Cohen, J. (2007). Animal behavior. The world through a chimp's eyes (Vol. 316).
|
|
|
Huber, L., & Gajdon, G. K. (2006). Technical intelligence in animals: the kea model. Anim. Cogn., 9(4), 295–305.
Abstract: The ability to act on information flexibly is one of the cornerstones of intelligent behavior. As particularly informative example, tool-oriented behavior has been investigated to determine to which extent nonhuman animals understand means-end relations, object affordances, and have specific motor skills. Even planning with foresight, goal-directed problem solving and immediate causal inference have been a focus of research. However, these cognitive abilities may not be restricted to tool-using animals but may be found also in animals that show high levels of curiosity, object exploration and manipulation, and extractive foraging behavior. The kea, a New Zealand parrot, is a particularly good example. We here review findings from laboratory experiments and field observations of keas revealing surprising cognitive capacities in the physical domain. In an experiment with captive keas, the success rate of individuals that were allowed to observe a trained conspecific was significantly higher than that of naive control subjects due to their acquisition of some functional understanding of the task through observation. In a further experiment using the string-pulling task, a well-probed test for means-end comprehension, we found the keas finding an immediate solution that could not be improved upon in nine further trials. We interpreted their performance as insightful in the sense of being sensitive of the relevant functional properties of the task and thereby producing a new adaptive response without trial-and-error learning. Together, these findings contribute to the ongoing debate on the distribution of higher cognitive skills in the animal kingdom by showing high levels of sensorimotor intelligence in animals that do not use tools. In conclusion, we suggest that the 'Technical intelligence hypothesis' (Byrne, Machiavellian intelligence II: extensions and evaluations, pp 289-211, 1997), which has been proposed to explain the origin of the ape/monkey grade-shift in intelligence by a selection pressure upon an increased efficiency in foraging behavior, should be extended, that is, applied to some birds as well.
|
|
|
Hunt, G. R., Rutledge, R. B., & Gray, R. D. (2006). The right tool for the job: what strategies do wild New Caledonian crows use? Anim. Cogn., 9(4), 307–316.
Abstract: New Caledonian crows Corvus moneduloides (NC crows) display sophisticated tool manufacture in the wild, but the cognitive strategy underlying these skills is poorly understood. Here, we investigate what strategy two free-living NC crows used in response to a tool-length task. The crows manufactured tools to extract food from vertical holes of different depths. The first tools they made in visits were of a similar length regardless of the hole depth. The typical length was usually too short to extract food from the deep holes, which ruled out a strategy of immediate causal inference on the first attempt in a trial. When the first tool failed, the crows made second tools significantly longer than the unsuccessful first tools. There was no evidence that the crows made the lengths of first tools to directly match hole depth. We argue that NC crows may generally use a two-stage heuristic strategy to solve tool problems and that performance on the first attempt in a trial is not necessarily the 'gold standard' for assessing folk physics.
|
|
|
Weir, A. A. S., & Kacelnik, A. (2006). A New Caledonian crow (Corvus moneduloides) creatively re-designs tools by bending or unbending aluminium strips. Anim. Cogn., 9(4), 317–334.
Abstract: Previous observations of a New Caledonian crow (Corvus moneduloides) spontaneously bending wire and using it as a hook [Weir et al. (2002) Science 297:981] have prompted questions about the extent to which these animals 'understand' the physical causality involved in how hooks work and how to make them. To approach this issue we examine how the same subject (“Betty”) performed in three experiments with novel material, which needed to be either bent or unbent in order to function to retrieve food. These tasks exclude the possibility of success by repetition of patterns of movement similar to those employed before. Betty quickly developed novel techniques to bend the material, and appropriately modified it on four of five trials when unbending was required. She did not mechanically apply a previously learned set of movements to the new situations, and instead sought new solutions to each problem. However, the details of her behaviour preclude concluding definitely that she understood and planned her actions: in some cases she probed with the unmodified tools before modifying them, or attempted to use the unmodified (unsuitable) end of the tool after modification. Gauging New Caledonian crows' level of understanding is not yet possible, but the observed behaviour is consistent with a partial understanding of physical tasks at a level that exceeds that previously attained by any other non-human subject, including apes.
|
|