|
Cerutti, D. T., & Staddon, J. E. R. (2004). Immediacy versus anticipated delay in the time-left experiment: a test of the cognitive hypothesis. J Exp Psychol Anim Behav Process, 30(1), 45–57.
Abstract: In the time-left experiment (J. Gibbon & R. M. Church, 1981), animals are said to compare an expectation of a fixed delay to food, for one choice, with a decreasing delay expectation for the other, mentally representing both upcoming time to food and the difference between current time and upcoming time (the cognitive hypothesis). The results of 2 experiments support a simpler view: that animals choose according to the immediacies of reinforcement for each response at a time signaled by available time markers (the temporal control hypothesis). It is not necessary to assume that animals can either represent or subtract representations of times to food to explain the results of the time-left experiment.
|
|
|
Petruso, E. J., Fuchs, T., & Bingman, V. P. (2007). Time-space learning in homing pigeons (Columba livia): orientation to an artificial light source. Anim. Cogn., 10(2), 181–188.
Abstract: Time-space learning reflects an ability to represent in memory event-stimulus properties together with the place and time of the event; a capacity well developed in birds. Homing pigeons were trained in an indoor octagonal arena to locate one food goal in the morning and a different food goal in the late afternoon. The goals differed with respect to their angular/directional relationship to an artificial light source located outside the arena. Further, the angular difference in reward position approximated the displacement of the sun's azimuth that would occur during the same time period. The experimental birds quickly learned the task, demonstrating the apparent ease with which birds can adopt an artificial light source to discriminate among alternative spatial responses at different times of the day. However, a novel midday probe session following successful learning revealed that the light source was interpreted as a stable landmark and not as a surrogate sun that would support compass orientation. Probe sessions following a phase shift of the light-dark cycle revealed that the mechanism employed to make the temporal discrimination was prevailingly based on an endogenous circadian rhythm and not an interval timing mechanism.
|
|
|
Zentall, T. R., & Kaiser, D. H. (2005). Interval timing with gaps: gap ambiguity as an alternative to temporal decay. J Exp Psychol Anim Behav Process, 31(4), 484–486.
Abstract: C. V. Buhusi, D. Perera, and W. H. Meck (2005) proposed a hypothesis of timing in rats to account for the results of experiments that have used the peak procedure with gaps. According to this hypothesis, the introduction of a gap causes the animal's memory for the pregap interval to passively decay (subjectively shorten) in direct proportion to the duration and salience of the gap. Thus, animals should pause with short, nonsalient gaps but should reset their clock with longer, salient gaps. The present authors suggest that the ambiguity of the gap (i.e., the similarity between the gap and the intertrial interval in both appearance and relative duration) causes the animal to actively reset the clock and prevents adequate assessments of the fate of timed intervals prior to the gap. Furthermore, when the intertrial interval is discriminable from the gap, the evidence suggests that timed intervals prior to the gap are not lost but are retained in memory.
|
|