|
Khalil, A. M., Murakami, N., & Kaseda, Y. (1998). Relationship between plasma testosterone concentrations and age, breeding season and harem size in Misaki feral horses. J Vet Med Sci, 60(5), 643–645.
Abstract: Jugular vein blood samples were collected from 23 young and sexual mature feral stallions to examine the relationship between plasma testosterone concentration and age, breeding season or harem size. Testosterone concentration increased with the age of the stallions until they formed their own harems, at about 4 to 6 years old. Seasonal variations in testosterone concentrations were observed, and found to be significantly higher (P<0.001) throughout the breeding season than non-breeding season, from 3 years of age. Testosterone levels were correlated with harem size for individual stallions. It can be inferred from these results that there is a relationship between plasma testosterone concentration and age, breeding season and harem size.
|
|
|
Kirkpatrick, J. F., Vail, R., Devous, S., Schwend, S., Baker, C. B., & Wiesner, L. (1976). Diurnal variation of plasma testosterone in wild stallions. Biol Reprod, 15(1), 98–101.
|
|
|
Kirkpatrick, J. F., Wiesner, L., Kenney, R. M., Ganjam, V. K., & Turner, J. W. (1977). Seasonal variation in plasma androgens and testosterone in the North American wild horse. J Endocrinol, 72(2), 237–238.
|
|
|
Turner, J. W. J., & Kirkpatrick, J. F. (1982). Androgens, behaviour and fertility control in feral stallions. J Reprod Fertil Suppl, 32, 79–87.
Abstract: This field study of feral stallions in Montana and Idaho examines and correlates the seasonal pattern of plasma androgens and specific sociosexual behaviour and reports the effect of a long-acting androgenic steroid on this behaviour and on fertility. Plasma testosterone was measured by competitive protein binding assay in samples obtained by jugular venepuncture from captured animals. In samples taken from 34 sexually mature stallions in 6 different months during the year, a definite seasonal pattern in testosterone was present, with a peak in May (3.04 +/- 0.63 ng/ml) and a nadir in December (1.55 +/- 0.34 ng/ml). Values were less than 2.0 ng/ml in non-breeding months and greater than 2.4 ng/ml in breeding months. Behavioural endpoints measured were (1) stallion scent marking in response to elimination by mares (elimination marking), (2) mounting and (3) copulation. The frequencies of each of these endpoints followed closely the seasonal pattern seen for plasma androgens. In the fertility study microcapsulated testosterone propionate (microTP) was administered i.m. to 10 harem stud stallions 3 months before the 1980 breeding season. In these stallions and in 10 control harem studs, the above behavioural endpoints were examined in the 1980 and 1981 breeding seasons, and foal counts were made in 1981. There were no direct inhibitory or stimulatory effects of microTP treatment on any of the behavioural endpoints in either year. In 1981 foals were produced in 87.5% of the control bands and 28.4% of the microTP-treated bands. These results indicate that microencapsulated testosterone propionate can provide effective fertility control in feral horses without causing significant alterations in sociosexual behaviour.
|
|
|
Villani, M., Cairoli, F., Kindahl, H., Galeati, G., Faustini, M., Carluccio, A., et al. (2006). Effects of mating on plasma concentrations of testosterone, cortisol, oestrone sulphate and 15-ketodihydro-PGF2alpha in stallions. Reprod Domest Anim, 41(6), 544–548.
Abstract: Very little information is available regarding the physiological mechanisms involved in the normal sexual activity in the stallion and, in particular, the endocrine control of reproduction is still not clearly understood. This experiment was designed to determine the short-term effect of sexual stimulation on plasma concentrations of testosterone, cortisol, oestrone sulphate and 15-ketodihydro-PGF(2alpha) in stallions. Semen samples were collected from 10 lighthorse stallions of proven fertility using a Missouri model artificial vagina. At the same time, blood samples were collected from the jugular vein with heparinized tubes, 20 and 10 min before oestrous mare exposure, at exposure and 10, 20, 30 min after dismounting. Testosterone concentrations showed a sharp rise 10 min after mating (p < 0.001), reached a plateau, and then showed a further increase 30 min after mating (p < 0.001). Cortisol concentrations increased 10 min after mating (p < 0.001) and remained at high levels in the subsequent samples taken. A peak of oestrone sulphate was observed 10 min after mating (p < 0.001). 15-Ketodihydro-PGF(2alpha) concentrations decreased rapidly at the moment of the exposure of the stallions to an oestrous mare (p < 0.05), returned to pre-mating concentrations and then decreased again 30 min after mating (p < 0.05).
|
|