|
Amant, R. S., & Horton, T. E. (2008). Revisiting the definition of animal tool use. Anim. Behav., 75(4), 1199–1208.
Abstract: Benjamin Beck's definition of tool use has served the field of animal cognition well for over 25 years (Beck 1980, Animal Tool Behavior: the Use and Manufacture of Tools, New York, Garland STPM). This article proposes a new, more explanatory definition that accounts for tool use in terms of two complementary subcategories of behaviours: behaviours aimed at altering a target object by mechanical means and behaviours that mediate the flow of information between the tool user and the environment or other organisms in the environment. The conceptual foundation and implications of the new definition are contrasted with those of existing definitions, particularly Beck's. The new definition is informally evaluated with respect to a set of scenarios that highlights differences from Beck's definition as well as those of others in the literature.
|
|
|
Bentley-Condit, V., & Smith, E. O. (2010). Animal tool use: current definitions and an updated comprehensive catalog. Behaviour, 147(2), 185–32.
Abstract: Despite numerous attempts to define animal tool use over the past four decades, the definition remains elusive and the behaviour classification somewhat subjective. Here, we provide a brief review of the definitions of animal tool use and show how those definitions have been modified over time. While some aspects have remained constant (i.e., the distinction between 'true' and 'borderline' tool use), others have been added (i.e., the distinction between 'dynamic' and 'static' behaviours). We present an updated, comprehensive catalog of documented animal tool use that indicates whether the behaviours observed included any 'true' tool use, whether the observations were limited to captive animals, whether tool manufacture has been observed, and whether the observed tool use was limited to only one individual and, thus, 'anecdotal' (i.e., N = 1). Such a catalog has not been attempted since Beck (1980). In addition to being a useful reference for behaviourists, this catalog demonstrates broad tool use and manufacture trends that may be of interest to phylogenists, evolutionary ecologists, and cognitive evolutionists. Tool use and tool manufacture are shown to be widespread across three phyla and seven classes of the animal kingdom. Moreover, there is complete overlap between the Aves and Mammalia orders in terms of the tool use categories (e.g., food extraction, food capture, agonism) arguing against any special abilities of mammals. The majority of tool users, almost 85% of the entries, use tools in only one of the tool use categories. Only members of the Passeriformes and Primates orders have been observed to use tools in four or more of the ten categories. Thus, observed tool use by some members of these two orders (e.g., Corvus, Papio) is qualitatively different from that of all other animal taxa. Finally, although there are similarities between Aves and Mammalia, and Primates and Passeriformes, primate tool use is qualitatively different. Approximately 35% of the entries for this order demonstrate a breadth of tool use (i.e., three or more categories by any one species) compared to other mammals (0%), Aves (2.4%), and the Passeriformes (3.1%). This greater breadth in tool use by some organisms may involve phylogenetic or cognitive differences � or may simply reflect differences in length and intensity of observations. The impact that tool usage may have had on groups' respective ecological niches and, through niche-construction, on their respective evolutionary trajectories remains a subject for future study.
|
|
|
Cohen, J. (2007). Animal behavior. The world through a chimp's eyes (Vol. 316).
|
|
|
Gruber, T., Clay, Z., & Zuberbühler, K. (2010). A comparison of bonobo and chimpanzee tool use: evidence for a female bias in the Pan lineage. Anim. Behav., 80(6), 1023–1033.
Abstract: Chimpanzees, Pan troglodytes, are the most sophisticated tool-users among all nonhuman primates. From an evolutionary perspective, it is therefore puzzling that the tool use behaviour of their closest living primate relative, the bonobo, Pan paniscus, has been described as particularly poor. However, only a small number of bonobo groups have been studied in the wild and only over comparably short periods. Here, we show that captive bonobos and chimpanzees are equally diverse tool-users in most contexts. Our observations illustrate that tool use in bonobos can be highly complex and no different from what has been described for chimpanzees. The only major difference in the chimpanzee and bonobo data was that bonobos of all age–sex classes used tools in a play context, a possible manifestation of their neotenous nature. We also found that female bonobos displayed a larger range of tool use behaviours than males, a pattern previously described for chimpanzees but not for other great apes. Our results are consistent with the hypothesis that the female-biased tool use evolved prior to the split between bonobos and chimpanzees.
|
|
|
Huber, L., & Gajdon, G. K. (2006). Technical intelligence in animals: the kea model. Anim. Cogn., 9(4), 295–305.
Abstract: The ability to act on information flexibly is one of the cornerstones of intelligent behavior. As particularly informative example, tool-oriented behavior has been investigated to determine to which extent nonhuman animals understand means-end relations, object affordances, and have specific motor skills. Even planning with foresight, goal-directed problem solving and immediate causal inference have been a focus of research. However, these cognitive abilities may not be restricted to tool-using animals but may be found also in animals that show high levels of curiosity, object exploration and manipulation, and extractive foraging behavior. The kea, a New Zealand parrot, is a particularly good example. We here review findings from laboratory experiments and field observations of keas revealing surprising cognitive capacities in the physical domain. In an experiment with captive keas, the success rate of individuals that were allowed to observe a trained conspecific was significantly higher than that of naive control subjects due to their acquisition of some functional understanding of the task through observation. In a further experiment using the string-pulling task, a well-probed test for means-end comprehension, we found the keas finding an immediate solution that could not be improved upon in nine further trials. We interpreted their performance as insightful in the sense of being sensitive of the relevant functional properties of the task and thereby producing a new adaptive response without trial-and-error learning. Together, these findings contribute to the ongoing debate on the distribution of higher cognitive skills in the animal kingdom by showing high levels of sensorimotor intelligence in animals that do not use tools. In conclusion, we suggest that the 'Technical intelligence hypothesis' (Byrne, Machiavellian intelligence II: extensions and evaluations, pp 289-211, 1997), which has been proposed to explain the origin of the ape/monkey grade-shift in intelligence by a selection pressure upon an increased efficiency in foraging behavior, should be extended, that is, applied to some birds as well.
|
|
|
Hunt, G. R., Rutledge, R. B., & Gray, R. D. (2006). The right tool for the job: what strategies do wild New Caledonian crows use? Anim. Cogn., 9(4), 307–316.
Abstract: New Caledonian crows Corvus moneduloides (NC crows) display sophisticated tool manufacture in the wild, but the cognitive strategy underlying these skills is poorly understood. Here, we investigate what strategy two free-living NC crows used in response to a tool-length task. The crows manufactured tools to extract food from vertical holes of different depths. The first tools they made in visits were of a similar length regardless of the hole depth. The typical length was usually too short to extract food from the deep holes, which ruled out a strategy of immediate causal inference on the first attempt in a trial. When the first tool failed, the crows made second tools significantly longer than the unsuccessful first tools. There was no evidence that the crows made the lengths of first tools to directly match hole depth. We argue that NC crows may generally use a two-stage heuristic strategy to solve tool problems and that performance on the first attempt in a trial is not necessarily the 'gold standard' for assessing folk physics.
|
|
|
Krueger, K., Trager, L., Farmer, K., & Byrne, R. (2022). Tool Use in Horses. Animals, 12(15), 1876.
Abstract: Tool use has not yet been confirmed in horses, mules or donkeys. As this subject is difficult to research with conventional methods, we used a crowdsourcing approach to gather data. We contacted equid owners and carers and asked them to report and video examples of �unusual� behaviour via a dedicated website. We also searched YouTube and Facebook for videos of equids showing tool use. From 635 reports, including 1014 behaviours, we found 20 cases of tool use, 13 of which were unambiguous in that it was clear that the behaviour was not trained, caused by reduced welfare, incidental or accidental. We then assessed (a) the effect of management conditions on tool use and (b) whether the animals used tools alone, or socially, involving other equids or humans. We found that management restrictions were associated with corresponding tool use in 12 of the 13 cases (p = 0.01), e.g., equids using sticks to scrape hay within reach when feed was restricted. Furthermore, 8 of the 13 cases involved other equids or humans, such as horses using brushes to groom others. The most frequent tool use was for foraging, with seven examples, tool use for social purposes was seen in four cases, and there was just one case of tool use for escape. There was just one case of tool use for comfort, and in this instance, there were no management restrictions. Equids therefore can develop tool use, especially when management conditions are restricted, but it is a rare occurrence.
|
|
|
Lefebvre, L., Reader, S. M., & Sol, D. (2004). Brains, Innovations and Evolution in Birds and Primates. Brain. Behav. Evol., 63(4), 233–246.
Abstract: Abstract
Several comparative research programs have focusedon the cognitive, life history and ecological traits thataccount for variation in brain size. We review one ofthese programs, a program that uses the reported frequencyof behavioral innovation as an operational measureof cognition. In both birds and primates, innovationrate is positively correlated with the relative size of associationareas in the brain, the hyperstriatum ventrale andneostriatum in birds and the isocortex and striatum inprimates. Innovation rate is also positively correlatedwith the taxonomic distribution of tool use, as well asinterspecific differences in learning. Some features ofcognition have thus evolved in a remarkably similar wayin primates and at least six phyletically-independent avianlineages. In birds, innovation rate is associated withthe ability of species to deal with seasonal changes in theenvironment and to establish themselves in new regions,and it also appears to be related to the rate atwhich lineages diversify. Innovation rate provides a usefultool to quantify inter-taxon differences in cognitionand to test classic hypotheses regarding the evolution ofthe brain.
|
|
|
Lonsdorf, E. V., Ross, S. R., Linick, S. A., Milstein, M. S., & Melber, T. N. (2009). An experimental, comparative investigation of tool use in chimpanzees and gorillas. Anim. Behav., 77(5), 1119–1126.
Abstract: Studies of ape tool use have been conducted in captivity since the early 1900s and in the wild since the 1960s. Chimpanzees are the most prolific tool users among the apes, and are known to use more tools than any other nonhuman animal. In contrast, reports of gorilla tool use are rare both in wild and captive settings. Studies of the processes involved in tool use learning have been limited in the wild by the lack of ability to control several unpredictable variables, and in captivity by tool use opportunities that are often presented in non-naturalistic contexts. We attempted to address both of these limitations by providing naïve subjects with a naturalistic tool use device (built to simulate a termite mound) while housed in a more natural social setting to approximate how learning would occur in the wild. Both gorillas and chimpanzees participated in the experiment to allow comparative analyses of acquisition of tool behaviour and the factors that may affect acquisition. Both species showed low frequencies of interaction with the mound in the baseline condition, before baiting with a food reward. Once baited, chimpanzees both attempted and succeeded to extract the reward more quickly than did gorillas. The number of social group members at the mound was significantly higher for chimpanzees than for gorillas and may have affected skill acquisition. We advocate that comparative approaches to skill acquisition and learning are valuable, but that researchers need to be cognizant of species differences in social structure that may affect results.
|
|
|
McCoy, D. E., Schiestl, M., Neilands, P., Hassall, R., Gray, R. D., & Taylor, A. H. (2019). New Caledonian Crows Behave Optimistically after Using Tools. Current Biology, .
Abstract: Summary Are complex, species-specific behaviors in animals reinforced by material reward alone or do they also induce positive emotions? Many adaptive human behaviors are intrinsically motivated: they not only improve our material outcomes, but improve our affect as well [1, 2, 3, 4, 5, 6, 7, 8]. Work to date on animal optimism, as an indicator of positive affect, has generally focused on how animals react to change in their circumstances, such as when their environment is enriched [9, 10, 11, 12, 13, 14] or they are manipulated by humans [15, 16, 17, 18, 19, 20, 21, 22, 23], rather than whether complex actions improve emotional state. Here, we show that wild New Caledonian crows are optimistic after tool use, a complex, species-specific behavior. We further demonstrate that this finding cannot be explained by the crows needing to put more effort into gaining food. Our findings therefore raise the possibility that intrinsic motivation (enjoyment) may be a fundamental proximate cause in the evolution of tool use and other complex behaviors. Video Abstract
|
|