|
Alexander, D. J. (1982). Ecological aspects of influenza A viruses in animals and their relationship to human influenza: a review. J R Soc Med, 75(10), 799–811.
|
|
|
Bazovska, S., Awad-Masalmeh, M., Kmety, E., & Spalekova, M. (1992). [Legionella antibodies in domestic animals]. Cesk Epidemiol Mikrobiol Imunol, 41(5), 268–273.
Abstract: Serological examination of 420 domestic animals for the presence of antilegionella antibodies indicates their high exposure to legionellae. On examination by the microagglutination reaction with a serum dilution of 1:64 or more the highest positive values were recorded in horses which reacted with antigens of L. pneumophila 1-14 in 36.2% and with antigens of another 19 types of legionellae in 47.8%. In pigs positive values recorded in 16.2% and in 21.1%; in cattle in 3.8% and 29.5%, in sheep in 7.5% and 11.3% and laboratory rabbits were quite negative. The importance of these findings with regard to the possible role of animals in the ecology of legionellae is obscure.
|
|
|
Beaver, B. V. (1981). Problems & values associated with dominance. Vet Med Small Anim Clin, 76(8), 1129–1131.
|
|
|
Beerwerth, W., & Schurmann, J. (1969). [Contribution to the ecology of mycobacteria]. Zentralbl Bakteriol [Orig], 211(1), 58–69.
|
|
|
Beveridge, W. I. (1993). Unravelling the ecology of influenza A virus. Hist Philos Life Sci, 15(1), 23–32.
Abstract: For 20 years after the influenza A virus was discovered in the early 1930s, it was believed to be almost exclusively a human virus. But in the 1950s closely related viruses were discovered in diseases of horses, pigs and birds. Subsequently influenza A viruses were found to occur frequently in many species of birds, particularly ducks, usually without causing disease. Researchers showed that human and animal strains can hybridise thus producing new strains. Such hybrids may be the cause of pandemics in man. Most pandemics have started in China or eastern Russia where many people are in intimate association with animals. This situation provides a breeding ground for new strains of influenza A virus.
|
|
|
Bottoms, G. D., Roesel, O. F., Rausch, F. D., & Akins, E. L. (1972). Circadian variation in plasma cortisol and corticosterone in pigs and mares. Am J Vet Res, 33(4), 785–790.
|
|
|
Boucher, J. M., Hanosset, R., Augot, D., Bart, J. M., Morand, M., Piarroux, R., et al. (2005). Detection of Echinococcus multilocularis in wild boars in France using PCR techniques against larval form. Vet Parasitol, 129(3-4), 259–266.
Abstract: Recently, new data have been collected on the distribution and ecology of Echinococcus multilocularis in European countries. Different ungulates species such as pig, goat, sheep, cattle and horse are known to host incomplete development of larval E. multilocularis. We report a case of E. multilocularis portage in two wild boars from a high endemic area in France (Department of Jura). Histological examination was performed and the DNA was isolated from hepatic lesions then amplified by using three PCR methods in two distinct institutes. Molecular characterisation of PCR products revealed 99% nucleotide sequence homology with the specific sequence of the U1 sn RNA gene of E. multilocularis, 99 and 99.9% nucleotide sequence homology with the specific sequence of the cytochrome oxydase gene of Echinococcus genus and 99.9% nucleotide sequence homology with a genomic DNA sequence of Echinococcus genus for the first and the second wild boar, respectively.
|
|
|
Bradley, B. L. (1980). Animal flavor types and their specific uses in compound feeds by species and age. Fortschr Tierphysiol Tierernahr, (11), 110–122.
|
|
|
Craig, J. V. (1986). Measuring social behavior: social dominance. J. Anim Sci., 62(4), 1120–1129.
Abstract: Social dominance develops more slowly when young animals are kept in intact peer groups where they need not compete for resources. Learned generalizations may cause smaller and weaker animals to accept subordinate status readily when confronted with strangers that would be formidable opponents. Sexual hormones and sensitivity to them can influence the onset of aggression and status attained. After dominance orders are established, they tend to be stable in female groups but are less so in male groups. Psychological influences can affect dominance relationships when strangers meet and social alliances within groups may affect relative status of individuals. Whether status associated with agonistic behavior is correlated with control of space and scarce resources needs to be determined for each species and each kind of resource. When such correlations exists, competitive tests and agonistic behavior associated with gaining access to scarce resources can be useful to the observer in learning about dominance relationships rapidly. Examples are given to illustrate how estimates of social dominance can be readily attained and some strengths and weaknesses of the various methods.
|
|
|
Dowdle, W. R., & Schild, G. C. (1976). Influenza: its antigenic variation and ecology. Bull Pan Am Health Organ, 10(3), 193–195.
Abstract: Influenza viruses have two surface antigens, the glycoprotein structures hemagglutinin (HA) and neuraminidase (NA). Antibodies to each of these are associated with immunity, but the structures themselves are antigenically variable. When an antigenic change is gradual over time it is referred to as a drift, while a sudden complete or major change in either or both antigens is termed a shift. The mechanism of antigenic drift is usually attributed to selection of preexisting mutants by pressure from increasing immunity in the human population. The mechanism of antigenic shift is less clear, but one tentative hypothesis is that shifts arise from mammalian or avian reservoirs, or through genetic recombination of human and animal influenza strains.
|
|