|
Boucher, J. M., Hanosset, R., Augot, D., Bart, J. M., Morand, M., Piarroux, R., et al. (2005). Detection of Echinococcus multilocularis in wild boars in France using PCR techniques against larval form. Vet Parasitol, 129(3-4), 259–266.
Abstract: Recently, new data have been collected on the distribution and ecology of Echinococcus multilocularis in European countries. Different ungulates species such as pig, goat, sheep, cattle and horse are known to host incomplete development of larval E. multilocularis. We report a case of E. multilocularis portage in two wild boars from a high endemic area in France (Department of Jura). Histological examination was performed and the DNA was isolated from hepatic lesions then amplified by using three PCR methods in two distinct institutes. Molecular characterisation of PCR products revealed 99% nucleotide sequence homology with the specific sequence of the U1 sn RNA gene of E. multilocularis, 99 and 99.9% nucleotide sequence homology with the specific sequence of the cytochrome oxydase gene of Echinococcus genus and 99.9% nucleotide sequence homology with a genomic DNA sequence of Echinococcus genus for the first and the second wild boar, respectively.
|
|
|
Broom, D. M., Sena, H., & Moynihan, K. L. (2009). Pigs learn what a mirror image represents and use it to obtain information. Anim. Behav., 78(5), 1037–1041.
Abstract: Mirror usage has been taken to indicate some degree of awareness in animals. Can pigs, Sus scrofa, obtain information from a mirror? When put in a pen with a mirror in it, young pigs made movements while apparently looking at their image. After 5 h spent with a mirror, the pigs were shown a familiar food bowl, visible in the mirror but hidden behind a solid barrier. Seven out of eight pigs found the food bowl in a mean of 23 s by going away from the mirror and around the barrier. Naïve pigs shown the same looked behind the mirror. The pigs were not locating the food bowl by odour, did not have a preference for the area where the food bowl was and did not go to that area when the food bowl was visible elsewhere. To use information from a mirror and find a food bowl, each pig must have observed features of its surroundings, remembered these and its own actions, deduced relationships among observed and remembered features and acted accordingly. This ability indicates assessment awareness in pigs. The results may have some effects on the design of housing conditions for pigs and may lead to better pig welfare.
|
|
|
Held, S., Baumgartner, J., Kilbride, A., Byrne, R. W., & Mendl, M. (2005). Foraging behaviour in domestic pigs (Sus scrofa): remembering and prioritizing food sites of different value. Anim. Cogn., 8(2), 114–121.
Abstract: This experiment investigated whether domestic pigs can remember the locations of food sites of different relative value, and how a restricted retrieval choice affects their foraging behaviour. Nine juvenile female pigs were trained to relocate two food sites out of a possible eight in a spatial memory task. The two baited sites contained different amounts of food and an obstacle was added to the smaller amount to increase handling time. On each trial, a pig searched for the two baited sites (search visit). Once it had found and eaten the bait, it returned for a second (relocation) visit, in which the two same sites were baited. Baited sites were changed between trials. All subjects learnt the task. When allowed to retrieve both baits, the subjects showed no preference for retrieving a particular one first (experiment 1). When they were allowed to retrieve only one bait, a significant overall preference for retrieving the larger amount emerged across subjects (experiment 2). To test whether this preference reflected an avoidance of the obstacle with the smaller bait, 15 choice-restricted control trials were conducted. In control trials obstacles were present with both baits. Pigs continued to retrieve the larger bait, indicating they had discriminated between the two food sites on the basis of quantity or profitability and adjusted their behaviour accordingly when the relocation choice was restricted. This suggests for the first time that domestic pigs have the ability to discriminate between food sites of different relative value and to remember their respective locations.
|
|
|
Munoz-Sanz, A. (2006). [Christopher Columbus flu. A hypothesis for an ecological catastrophe]. Enferm Infecc Microbiol Clin, 24(5), 326–334.
Abstract: When Christopher Columbus and his men embarked on the second Colombian expedition to the New World (1493), the crew suffered from fever, respiratory symptoms and malaise. It is generally accepted that the disease was influenza. Pigs, horses and hens acquired in Gomera (Canary Islands) traveled in the same ship. The pigs may well have been the origin of the flu and the intermediary hosts for genetic recombination of other viral subtypes. The Caribbean archipelago had a large population of birds, the natural reservoir of the avian influenza virus. In this ecological scenario there was a concurrence of several biological elements that had never before coexisted in the New World: pigs, horses, the influenza virus and humans. We propose that birds are likely to have played an important role in the epidemiology of the flu occurring on the second Colombian trip, which caused a fatal demographic catastrophe, with an estimated mortality of 90% among the natives.
|
|
|
Nogueira, S. S. da C., Nogueira-Filho, S. L. G., Bassford, M., Silvius, K., & Fragoso, J. M. V. (2007). Feral pigs in Hawai`i: Using behavior and ecology to refine control techniques. Appl. Anim. Behav. Sci., 108(1-2), 1–11.
Abstract: Early Polynesians settlers were the first to introduce pigs to the Hawaiian Islands. Later Captain Cook brought European pigs during his first voyage to Hawai`i. Many other importations have followed. Animals from these introductions became feral and dispersed throughout the islands. Free-ranging pigs are now considered pests with negative impacts on some native biota. Several methods to control the ecological damage attributed to pigs have been adopted, such as fencing, hunting, live trapping and poisoning. However, the absence of behavioral knowledge in current control programs has resulted in inefficient management of this species. Therefore, the feral pig problem continues, and what before was almost strictly an agricultural and conservation concern has now become an urban problem as well. The aim of this study is to describe the state of knowledge on feral pig behavior in the Hawaiian Islands, introducing potential management approaches derived from the principles of behavioral ecology. Considering behavioral aspects of feral pig ecology, such as cognition and communication could help improve capture techniques, keep feral pigs away from urban areas and begin to resolve human-wildlife conflicts.
|
|