|
Clutton-Brock, T. H., Russell, A. F., Sharpe, L. L., Brotherton, P. N., McIlrath, G. M., White, S., et al. (2001). Effects of helpers on juvenile development and survival in meerkats. Science, 293(5539), 2446–2449.
Abstract: Although breeding success is known to increase with group size in several cooperative mammals, the mechanisms underlying these relationships are uncertain. We show that in wild groups of cooperative meerkats, Suricata suricatta, reductions in the ratio of helpers to pups depress the daily weight gain and growth of pups and the daily weight gain of helpers. Increases in the daily weight gain of pups are associated with heavier weights at independence and at 1 year of age, as well as with improved foraging success as juveniles and higher survival rates through the first year of life. These results suggest that the effects of helpers on the fitness of pups extend beyond weaning and that helpers may gain direct as well as indirect benefits by feeding pups.
|
|
|
Nicol, C. J., Yoon, M., Ward, J. M., Yamashita, M., Fukamachi, K., Peters, J. M., et al. (2004). PPARgamma influences susceptibility to DMBA-induced mammary, ovarian and skin carcinogenesis. Carcinogenesis, 25(9), 1747–1755.
Abstract: Peroxisome proliferator-activated receptor gamma (PPARgamma), a member of the nuclear receptor superfamily, plays a role in adipocyte differentiation, type II diabetes, macrophage response to inflammation and is suggested to influence carcinogen-induced colon cancer. Studies done in vitro and in vivo also revealed that PPARgamma ligands might promote differentiation and/or regression of mammary tumors. To directly evaluate the role of PPARgamma in mammary carcinogenesis, PPARgamma wild-type (+/+) or heterozygous (+/-) mice were administered 1 mg 7,12-dimethylbenz[a]anthracene (DMBA) by gavage once a week for 6 weeks and followed for a total of 25 weeks. Compared with congenic PPARgamma(+/+) littermate controls, PPARgamma(+/-) mice had early evidence for increased susceptibility to DMBA-mediated carcinogenesis based on a 1.6-fold increase in the percentage of mice with skin papillomas, as well as a 1.7-fold increase in the numbers of skin papillomas per mouse (P < 0.05). Similarly, PPARgamma(+/-) mice also had a 1.5-fold decreased survival rate (P = 0.059), and a 1.7-fold increased incidence of total tumors per mouse (P < 0.01). Moreover, PPARgamma(+/-) mice had an almost 3-fold increase in mammary adenocarcinomas (P < 0.05), an over 3-fold increase in ovarian granulosa cell carcinomas (P < 0.05), an over 3-fold increase in malignant tumors (P < 0.02) and a 4.6-fold increase in metastatic incidence. These results are the first to demonstrate an increased susceptibility in vivo of PPARgamma haploinsufficiency to DMBA-mediated carcinogenesis and suggest that PPARgamma may act as a tumor modifier of skin, ovarian and breast cancers. The data also support evidence suggesting a beneficial role for PPARgamma-specific ligands in the chemoprevention of mammary, ovarian and skin carcinogenesis.
|
|