|
Palme, R., Rettenbacher, S., Touma, C., El-Bahr, S. M., & Mostl, E. (2005). Stress hormones in mammals and birds: comparative aspects regarding metabolism, excretion, and noninvasive measurement in fecal samples. Ann N Y Acad Sci, 1040, 162–171.
Abstract: A multitude of endocrine mechanisms are involved in coping with challenges. Front-line hormones to overcome stressful situations are glucocorticoids (GCs) and catecholamines (CAs). These hormones are usually determined in plasma samples as parameters of adrenal activity and thus of disturbance. GCs (and CAs) are extensively metabolized and excreted afterwards. Therefore, the concentration of GCs (or their metabolites) can be measured in various body fluids or excreta. Above all, fecal samples offer the advantages of easy collection and a feedback-free sampling procedure. However, large differences exist among species regarding the route and time course of excretion, as well as the types of metabolites formed. Based on information gained from radiometabolism studies (reviewed in this paper), we recently developed and successfully validated different enzyme immunoassays that enable the noninvasive measurement of groups of cortisol or corticosterone metabolites in animal feces. The determination of these metabolites in fecal samples can be used as a powerful tool to monitor GC production in various species of domestic, wildlife, and laboratory animals.
|
|
|
Stahl, F., & Dorner, G. (1982). Responses of salivary cortisol levels to stress-situations. Endokrinologie, 80(2), 158–162.
Abstract: A procedure is described for determining salivary cortisol levels by a competitive protein-binding assay using horse transcortin. The collection of saliva was performed by means of filter paper-strips. Filter paper samples are more than 5 days stable after air-drying. In this form, the samples could be stored without refrigerator or deep-freezer and, if necessary, sent by post to the laboratory without any special precaution. Stressful situation of either painful or anxious origin were associated with an adequate increase of salivary cortisol levels. The increases were 157 to 230% of the initial or normal values dependent on the kind of stress. The mean values in 4 cases of Cushing's syndrome were 380% and 1 hour after 25 I.U. ACTH 690% higher than those in normal persons. In normal persons, a well-defined circadian rhythm has been observed.
|
|