|
Clayton, H. M., Lanovaz, J. L., Schamhardt, H. C., & van Wessum, R. (1999). The effects of a rider's mass on ground reaction forces and fetlock kinematics at the trot. Equine Vet J Suppl, 30, 218–221.
Abstract: Ground reaction force (GRF) measurements are often normalised to body mass to facilitate inter-individual comparisons. The objective of this study was to explore the effect of a rider on the GRFs and fetlock joint kinematics of trotting horses. The subjects were 5 dressage-trained horses and 3 experienced dressage riders. Ground reaction force measurements and sagittal view videotapes were recorded as the horses trotted at the same velocity in hand (3.49 +/- 0.52 m/s) and with a rider (3.49 +/- 0.46 m/s). Data were time-normalised to stance duration. Ground reaction force measurements were expressed in absolute terms and normalised to the system mass (horse or horse plus rider). All the horses showed changes in the same direction when comparing the ridden condition with the in-hand condition. There was an increase in the absolute peak vertical GRFs of the fore- and hindlimbs with a rider. However, the mass-normalised peak vertical GRFs were lower for the ridden condition, with the peak occurring later in the forelimbs and earlier in the hindlimbs compared with the inhand condition. Maximal fetlock angle and its time of occurrence were similar for the 2 conditions, but the fore fetlock joint was more extended during the later part of the stance phase in ridden horses. The presence of a rider appeared to affect the GRFs and fetlock joint kinematics differently in the fore- and hindlimbs, and the ridden horse did not seem to be equivalent to a proportionately larger horse. This should be considered when normalising for body mass in studies comparing horses in hand and ridden horses.
|
|
|
Davies, H. M. S. (2005). The timing and distribution of strains around the surface of the midshaft of the third metacarpal bone during treadmill exercise in one Thoroughbred racehorse. Aust Vet J, 83(3), 157–162.
Abstract: OBJECTIVE: To confirm that the midshaft dorsal cortex of the third metacarpal bone experienced higher compressive strains during fast exercise than the medial or lateral cortices, and that the strain peak occurred earlier in the hoof-down phase of the stride on the dorsal cortex than the medial or lateral cortices. DESIGN: Observations of a single horse. PROCEDURE: Strains were collected from a single, sound, 3-year-old Thoroughbred mare during treadmill exercise from rosette strain gauges implanted onto the medial, lateral and dorsal surfaces of the midshaft of the right cannon bone, simultaneously with data from a hoof switch that showed when the hoof was in the stance phase. RESULTS: Peak compressive strains on the dorsal surface of the third metacarpal bone were proportional to exercise speed and occurred at about 30% of stance. Peak compressive strains on the medial surface of the non-lead limb reached a maximum at a speed around 10 m/s and occurred at mid-stance. Peak compressive strains on the lateral surface varied in timing and size between strides at all exercise speeds, but remained less than -2000 microstrains. CONCLUSIONS: The timing of peak compressive strains on the dorsal cortex suggests a relationship to deceleration of the limb following hoof impact, so the main determinants of their size would be exercise speed and turning (as shown in previous experiments). This experiment confirms data from other laboratories that were published but not discussed, that peak compressive strains on the medial surface occur at mid-stance. This suggests that they are related to the support of body weight. The strains on the lateral cortex occurred at variable times so may be associated with the maintenance of balance as well as the support of body weight. Understanding the loading of the third metacarpal bone will help to determine causes of damage to it and ways in which the bone might be conditioned to prevent such damage.
|
|
|
Hertsch, B. (1992). [The appearance of stress on the movement apparatus in dressage, jumping and versatility horses]. Dtsch Tierarztl Wochenschr, 99(1), 36–39.
Abstract: Jumping and military (three days events) horses are exposed, during sports activities, to a particularly high stress especially in the region of the extremities (limbs). The genesis of tendon, joint and bone diseases are traced in accordance to the centers of the load during movement sequence. A special statistics on injuries concerning the German competition horses does not exist yet. Out of the available statistics about the German competition horses it is not obvious that as a result of its use as sports horses a particular high loss occur among these horses.
|
|
|
Licka, T., Kapaun, M., & Peham, C. (2004). Influence of rider on lameness in trotting horses. Equine Vet J, 36(8), 734–736.
Abstract: REASONS FOR PERFORMING STUDY: Equine lameness is commonly evaluated when the horse is being ridden, but the influence of the rider on the lameness has not been documented. OBJECTIVE: To document the effect of 2 riders of different training levels on the vertical movement of the head and croup. METHODS: Twenty mature horses were ridden at trot by an experienced dressage rider and a novice rider, as well as trotted in hand. Kinematic measurements of markers placed on the horse's head and sacral bone were carried out. The asymmetries of the vertical head and sacral bone motion were calculated as lameness parameters and compared with paired t tests. RESULTS: Trotting in hand, 17 horses showed forelimb lameness (1-4/10) and 13 hindlimb lameness (1-2/10). Intra-individually, 11 horses showed significant differences in forelimb lameness and 4 horses showed significant differences in hindlimb lameness when ridden. Over all horses, hindlimb lameness increased significantly under the dressage rider compared to unridden horses. CONCLUSIONS: The presence of a rider can alter the degree of lameness; however, its influence cannot be predicted for an individual horse. POTENTIAL RELEVANCE: In order to evaluate mild lameness, horses should be evaluated at trot both under saddle and in hand. If lameness is exacerbated, a second rider may be helpful; the level of training of the rider should be taken into consideration.
|
|
|
Wennerstrand, J., Johnston, C., Roethlisberger-Holm, K., Erichsen, C., Eksell, P., & Drevemo, S. (2004). Kinematic evaluation of the back in the sport horse with back pain. Equine Vet J, 36(8), 707–711.
Abstract: REASONS FOR PERFORMING STUDY: Earlier studies have developed a clinical tool to evaluate objectively the function of the equine back. The ability to differentiate horses with back pain from asymptomatic, fully functioning horses using kinematic measures from this tool has not been evaluated. OBJECTIVES: To compare the kinematics of the back at walk and trot in riding horses with back dysfunction to the same parameters in asymptomatic sport horses. METHODS: The kinematics of the back in 12 horses with impaired performance and back pain were studied at walk and trot on a treadmill. Data were captured for 10 sees at 240 Hz. Range of movement (ROM) and intravertebral pattern symmetry of movement for flexion and extension (FE), lateral bending (LB) and axial rotation (AR) were derived from angular motion pattern data and the results compared to an earlier established database on asymptomatic riding horses. RESULTS: At walk, horses with back dysfunction had a ROM smaller for dorsoventral FE in the caudal thoracic region (T13 = 7.50 degrees, T17 = 7.71 degrees; P<0.05), greater for LB at T13 (8.13 degrees; P<0.001) and smaller for AR of the pelvis (10.97 degrees; P<0.05) compared to asymptomatic horses (FE-T13 = 8.28 degrees, FE-T17 = 8.49 degrees, LB-T13 = 6.34 degrees, AR-pelvis = 12.77 degrees). At trot, dysfunctional horses had a smaller (P<0.05) ROM for FE at the thoracic lumbar junction (T17 = 2.46 degrees, L1 = 2.60 degrees) compared to asymptomatic horses (FE-T17 = 3.07 degrees, FE-L1 = 3.12 degrees). CONCLUSIONS: The objective measurement technique can detect differences between back kinematics in riding horses with signs of back dysfunction and asymptomatic horses. The clinical manifestation of back pain results in diminished flexion/extension movement at or near the thoracic lumbar junction. However, before applying the method more extensively in practice it is necessary to evaluate it further, including measurements of patients whose diagnoses can be confirmed and long-term follow-ups of back patients after treatment. POTENTIAL RELEVANCE: Since the objective measurement technique can detect small movement differences in back kinematics, it should help to clinically describe and, importantly, objectively detect horses with back pain and dysfunction.
|
|