|
Fischer, J., Hammerschmidt, K., Cheney, D. L., & Seyfarth, R. M. (2002). Acoustic features of male baboon loud calls: influences of context, age, and individuality. J Acoust Soc Am, 111(3), 1465–1474.
Abstract: The acoustic structure of loud calls (“wahoos”) recorded from free-ranging male baboons (Papio cynocephalus ursinus) in the Moremi Game Reserve, Botswana, was examined for differences between and within contexts, using calls given in response to predators (alarm wahoos), during male contests (contest wahoos), and when a male had become separated from the group (contact wahoos). Calls were recorded from adolescent, subadult, and adult males. In addition, male alarm calls were compared with those recorded from females. Despite their superficial acoustic similarity, the analysis revealed a number of significant differences between alarm, contest, and contact wahoos. Contest wahoos are given at a much higher rate, exhibit lower frequency characteristics, have a longer “hoo” duration, and a relatively louder “hoo” portion than alarm wahoos. Contact wahoos are acoustically similar to contest wahoos, but are given at a much lower rate. Both alarm and contest wahoos also exhibit significant differences among individuals. Some of the acoustic features that vary in relation to age and sex presumably reflect differences in body size, whereas others are possibly related to male stamina and endurance. The finding that calls serving markedly different functions constitute variants of the same general call type suggests that the vocal production in nonhuman primates is evolutionarily constrained.
|
|
|
Heffner, R. S., & Heffner, H. E. (1986). Localization of tones by horses: use of binaural cues and the role of the superior olivary complex. Behav Neurosci, 100(1), 93–103.
Abstract: The ability of horses to use binaural time and intensity difference cues to localize sound was assessed in free-field localization tests by using pure tones. The animals were required to discriminate the locus of a single tone pip ranging in frequency from 250 Hz to 25 kHz emitted by loudspeakers located 30 degrees to the left and right of the animals' midline (60 degrees total separation). Three animals were tested with a two-choice procedure; 2 additional animals were tested with a conditioned avoidance procedure. All 5 animals were able to localize 250 Hz, 500 Hz, and 1 kHz but were completely unable to localize 2 kHz and above. Because the frequency of ambiguity for the binaural phase cue delta phi for horses in this test was calculated to be 1.5 kHz, these results indicate that horses can use binaural time differences in the form of delta phi but are unable to use binaural intensity differences. This finding was supported by an unconditioned orientation test involving 4 additional horses, which showed that horses correctly orient to a 500-Hz tone pip but not to an 8-kHz tone pip. Analysis of the superior olivary complex, the brain stem nucleus at which binaural interactions first take place, reveals that the lateral superior olive (LSO) is relatively small in the horse and lacks the laminar arrangement of bipolar cells characteristic of the LSO of most mammals that can use binaural delta I.
|
|
|
Klein, E. D., & Zentall, T. R. (2003). Imitation and affordance learning by pigeons (Columba livia). J Comp Psychol, 117(4), 414–419.
Abstract: The bidirectional control procedure was used to determine whether pigeons (Columba livia) would imitate a demonstrator that pushed a sliding screen for food. One group of observers saw a trained demonstrator push a sliding screen door with its beak (imitation group), whereas 2 other groups watched the screen move independently (possibly learning how the environment works) with a conspecific either present (affordance learning with social facilitation) or absent (affordance learning alone). A 4th group could not see the screen being pushed (sound and odor control). Imitation was evidenced by the finding that pigeons that saw a demonstrator push the screen made a higher proportion of matching screen pushes than observers in 2 appropriate control conditions. Further, observers that watched a screen move without a demonstrator present made a significantly higher proportion of matching screen pushes than would be expected by chance. Thus, these pigeons were capable of affordance learning.
|
|
|
Mercado, E. 3rd, Herman, L. M., & Pack, A. A. (2005). Song copying by humpback whales: themes and variations. Anim. Cogn., 8(2), 93–102.
Abstract: Male humpback whales (Megaptera novaeangliae) produce long, structured sequences of sound underwater, commonly called “songs.” Humpbacks progressively modify their songs over time in ways that suggest that individuals are copying song elements that they hear being used by other singers. Little is known about the factors that determine how whales learn from their auditory experiences. Song learning in birds is better understood and appears to be constrained by stable core attributes such as species-specific sound repertoires and song syntax. To clarify whether similar constraints exist for song learning by humpbacks, we analyzed changes over 14 years in the sounds used by humpback whales singing in Hawaiian waters. We found that although the properties of individual sounds within songs are quite variable over time, the overall distribution of certain acoustic features within the repertoire appears to be stable. In particular, our findings suggest that species-specific constraints on temporal features of song sounds determine song form, whereas spectral variability allows whales to flexibly adapt song elements.
|
|
|
Naylor, J. M., Poirier, K. L., Hamilton, D. L., & Dowling, P. M. (2006). The effects of feeding and fasting on gastrointestinal sounds in adult horses. J Vet Intern Med, 20(6), 1408–1413.
Abstract: The effect of changes in feed intake on auscultatable gastrointestinal sounds has not been systematically studied. Disagreement also is present in the literature about variation in sounds according to the quadrant of auscultation. Gastrointestinal sounds were recorded over the center of the left dorsal, left ventral, right ventral, and right dorsal quadrants and over the middle of the right abdominal flank. During 24 hours (n = 4) or 48 hours (n = 5) of fasting, there was a reduction in the intensity of gastrointestinal sounds as assessed by analysis of sound recordings. There was also a reduction in the number of mixing-like and propulsive-like sounds heard by 2 blinded observers. After refeeding, there was a marked increase in sound. Sound intensity varied among abdominal quadrants, but blinded observers did not notice significant differences in the number of mixing-like sounds. The left dorsal quadrant was quieter than others during fasting and refeeding. The right ventral quadrant appeared to be least affected by fasting, and sounds were louder over the right ventral and right middle quadrants than over the others. The blinded observers' perceptions of sound correlated poorly with one another and with objective measures of sound intensity. This experiment demonstrates the effectiveness of computerized analysis of abdominal sound in detecting a reduction in the intensity of gastrointestinal sounds during fasting and their return during refeeding. The left dorsal quadrant was quieter than other quadrants, likely because of its position over the small colon. There was considerable observer variation in the number of intestinal sounds heard.
|
|
|
Owren, M. J., Dieter, J. A., Seyfarth, R. M., & Cheney, D. L. (1993). Vocalizations of rhesus (Macaca mulatta) and Japanese (M. fuscata) macaques cross-fostered between species show evidence of only limited modification. Dev Psychobiol, 26(7), 389–406.
Abstract: Two rhesus and two Japanese macaque infants were cross-fostered between species in order to study the effects of auditory experience on vocal development. Both the cross-fostered and normally raised control subjects were observed over the first 2 years of life and their vocalizations were tape-recorded. We classified 8053 calls by ear, placed each call in one of six acoustic categories, and calculated the rates at which different call-types were used in different social contexts. Species differences were found in the use of “coo” and “gruff” vocalizations among control subjects. Japanese macaques invariably produced coos almost exclusively. In contrast, rhesus macaques produced a mixture of coos and gruffs and showed considerable interindividual variation in the relative use of one call type or the other. Cross-fostered Japanese macaques adhered to their species-typical behavior, rarely using gruffs. Cross-fostered rhesus subjects also exhibited species-typical behavior in many contexts, but in some situations produced coos and gruffs at rates that were intermediate between those shown by normally raised animals of the two species. This outcome suggests that environmentally mediated modification of vocal behavior may have occurred, but that the resulting changes were quite limited.
|
|
|
Owren, M. J., Seyfarth, R. M., & Cheney, D. L. (1997). The acoustic features of vowel-like grunt calls in chacma baboons (Papio cyncephalus ursinus): implications for production processes and functions. J Acoust Soc Am, 101(5 Pt 1), 2951–2963.
Abstract: The acoustic features of 216 baboon grunts were investigated through analysis of field-recorded calls produced by identified females in known contexts. Analyses addressed two distinct questions: whether the acoustic features of these tonal sounds could be characterized using a source-filter approach and whether the acoustic features of grunts varied by individual caller and social context. Converging evidence indicated that grunts were produced through a combination of periodic laryngeal vibration and a stable vocal tract filter. Their acoustic properties closely resembled those of prototypical human vowel sounds. In general, variation in the acoustic features of the grunts was more strongly related to caller identity than to the social contexts of calling. However, two acoustic parameters, second formant frequency and overall spectral tilt, did vary consistently depending on whether the caller was interacting with an infant or participating in a group move. Nonetheless, in accordance with the general view that identity cueing is a compelling function in animal communication, it can be concluded that much of the observed variability in grunt acoustics is likely to be related to this aspect of signaling. Further, cues related to vocal tract filtering appear particularly likely to play an important role in identifying individual calling animals.
|
|
|
Rendall, D., Cheney, D. L., & Seyfarth, R. M. (2000). Proximate factors mediating “contact” calls in adult female baboons (Papio cynocephalus ursinus) and their infants. J Comp Psychol, 114(1), 36–46.
Abstract: “Contact” calls are widespread in social mammals and birds, but the proximate factors that motivate call production and mediate their contact function remain poorly specified. Field study of chacma baboons (Papio cynocephalus ursinus) revealed that contact barks in adult females were motivated by separation both from the group at large and from their dependent infants. A variety of social and ecological factors affect the probability of separation from either one or both. Results of simultaneous observations and a playback experiment indicate that the contact function of calling between mothers and infants was mediated by occasional maternal retrieval rather than coordinated call exchange. Mothers recognized the contact barks of their own infants and often were strongly motivated to locate them. However, mothers did not produce contact barks in reply unless they themselves were at risk of becoming separated from the group.
|
|
|
Seyfarth, R. M., & Cheney, D. L. (1984). The acoustic features of vervet monkey grunts. J Acoust Soc Am, 75(5), 1623–1628.
Abstract: East African vervet monkeys give short (125 ms), harsh-sounding grunts to each other in a variety of social situations: when approaching a dominant or subordinate member of their group, when moving into a new area of their range, or upon seeing another group. Although all these vocalizations sound similar to humans, field playback experiments have shown that the monkeys distinguish at least four different calls. Acoustic analysis reveals that grunts have an aperiodic F0, at roughly 240 Hz. Most grunts exhibit a spectral peak close to this irregular F0. Grunts may also contain a second, rising or falling frequency peak, between 550 and 900 Hz. The location and changes in these two frequency peaks are the cues most likely to be used by vervets when distinguishing different grunt types.
|
|
|
Seyfarth, R. M., & Cheney, D. L. (2003). Meaning and emotion in animal vocalizations. Ann N Y Acad Sci, 1000, 32–55.
Abstract: Historically, a dichotomy has been drawn between the semantic communication of human language and the apparently emotional calls of animals. Current research paints a more complicated picture. Just as scientists have identified elements of human speech that reflect a speaker's emotions, field experiments have shown that the calls of many animals provide listeners with information about objects and events in the environment. Like human speech, therefore, animal vocalizations simultaneously provide others with information that is both semantic and emotional. In support of this conclusion, we review the results of field experiments on the natural vocalizations of African vervet monkeys, diana monkeys, baboons, and suricates (a South African mongoose). Vervet and diana monkeys give acoustically distinct alarm calls in response to the presence of leopards, eagles, and snakes. Each alarm call type elicits a different, adaptive response from others nearby. Field experiments demonstrate that listeners compare these vocalizations not just according to their acoustic properties but also according to the information they convey. Like monkeys, suricates give acoustically distinct alarm calls in response to different predators. Within each predator class, the calls also differ acoustically according to the signaler's perception of urgency. Like speech, therefore, suricate alarm calls convey both semantic and emotional information. The vocalizations of baboons, like those of many birds and mammals, are individually distinctive. As a result, when one baboon hears a sequence of calls exchanged between two or more individuals, the listener acquires information about social events in its group. Baboons, moreover, are skilled “eavesdroppers:” their response to different call sequences provides evidence of the sophisticated information they acquire from other individuals' vocalizations. Baboon males give loud “wahoo” calls during competitive displays. Like other vocalizations, these highly emotional calls provide listeners with information about the caller's dominance rank, age, and competitive ability. Although animal vocalizations, like human speech, simultaneously encode both semantic and emotional information, they differ from language in at least one fundamental respect. Although listeners acquire rich information from a caller's vocalization, callers do not, in the human sense, intend to provide it. Listeners acquire information as an inadvertent consequence of signaler behavior.
|
|