|
Barton, M. D., & Hughes, K. L. (1984). Ecology of Rhodococcus equi. Vet Microbiol, 9(1), 65–76.
Abstract: A selective broth enrichment technique was used to study the distribution of Rhodococcus equi in soil and grazing animals. Rhodococcus equi was isolated from 54% of soils examined and from the gut contents, rectal faeces and dung of all grazing herbivorous species examined. Rhodococcus equi was not isolated from the faeces or dung of penned animals which did not have access to grazing. The isolation rate from dung was much higher than from other samples and this was found to be due to the ability of R. equi to multiply more readily in dung. Delayed hypersensitivity tests were carried out on horses, sheep and cattle, but only horses reacted significantly. The physiological characteristics of R. equi and the nature of its distribution in the environment suggested that R. equi is a soil organism.
|
|
|
Beerwerth, W., & Schurmann, J. (1969). [Contribution to the ecology of mycobacteria]. Zentralbl Bakteriol [Orig], 211(1), 58–69.
|
|
|
Chmel, L., Hasilikova, A., Hrasko, J., & Vlacilikova, A. (1972). The influence of some ecological factors on keratinophilic fungi in the soil. Sabouraudia, 10(1), 26–34.
|
|
|
De Stoppelaire, G. H., Gillespie, T. W., Brock, J. C., & Tobin, G. A. (2004). Use of remote sensing techniques to determine the effects of grazing on vegetation cover and dune elevation at Assateague Island National Seashore: impact of horses. Environ Manage, 34(5), 642–649.
Abstract: The effects of grazing by feral horses on vegetation and dune topography at Assateague Island National Seashore were investigated using color-infrared imagery, lidar surveys, and field measurements. Five pairs of fenced and unfenced plots (300 m2) established in 1993 on sand flats and small dunes with similar elevation, topography, and vegetation cover were used for this study. Color-infrared imagery from 1998 and field measurements from 2001 indicated that there was a significant difference in vegetation cover between the fenced and unfenced plot-pairs over the study period. Fenced plots contained a higher percentage of vegetation cover that was dominated by American beachgrass (Ammophila breviligulata). Lidar surveys from 1997, 1999, and 2000 showed that there were significant differences in elevation and topography between fenced and unfenced plot-pairs. Fenced plots were, on average, 0.63 m higher than unfenced plots, whereas unfenced plots had generally decreased in elevation after establishment in 1993. Results demonstrate that feral horse grazing has had a significant impact on dune formation and has contributed to the erosion of dunes at Assateague Island. The findings suggest that unless the size of the feral horse population is reduced, grazing will continue to foster unnaturally high rates of dune erosion into the future. In order to maintain the natural processes that historically occurred on barrier islands, much larger fenced exclosures would be required to prevent horse grazing.
|
|
|
Hughes, K. L., & Sulaiman, I. (1987). The ecology of Rhodococcus equi and physicochemical influences on growth. Vet Microbiol, 14(3), 241–250.
Abstract: Growth of Rhodococcus equi was studied in vitro. Optimal growth occurred under aerobic conditions between pH 7.0 and 8.5, at 30 degrees C. R. equi survived better in a neutral soil (pH 7.3) than it did in two acid soils (pH less than 5.5). It grew substantially better in soils enriched with faeces than in soils alone. Simple organic acids in horse dung, especially acetate and propionate, appear to be important in supporting growth of R. equi in the environment. The ecology of R. equi can be best explained by an environmental cycle allowing its proliferation in dung, influenced by management, grazing behaviour and prevailing climatic conditions. Preventive measures should be aimed at reducing or avoiding focal areas of faecal contamination in the environment.
|
|
|
Husted, L., Andersen, M. S., Borggaard, O. K., Houe, H., & Olsen, S. N. (2005). Risk factors for faecal sand excretion in Icelandic horses. Equine Vet J, 37(4), 351–355.
Abstract: REASONS FOR PERFORMING STUDY: Sandy soil is often mentioned as a risk factor in the development of sand-related gastrointestinal disease (SGID) in the horse. There are other variables, but few studies confirm any of these. OBJECTIVE: To investigate soil type, pasture quality, feeding practice in the paddock, age, sex and body condition score as risk factors for sand intake in the horse. METHODS: Faeces were collected from 211 Icelandic horses on 19 different studs in Denmark together with soil samples and other potential risk factors. Sand content in faeces determined by a sand sedimentation test was interpreted as evidence of sand intake. Soil types were identified by soil analysis and significance of the data was tested using logistic analysis. RESULTS: Of horses included in the study, 56.4% showed sand in the faeces and 5.7% had more than 5 mm sand as quantified by the rectal sleeve sedimentation test. Soil type had no significant effect when tested as main effect, but there was interaction between soil type and pasture quality. Significant interactions were also found between paddock feeding practice and pasture quality. CONCLUSION: To evaluate the risk of sand intake it is important to consider 3 variables: soil type, pasture quality and feeding practice. Pasture quality was identified as a risk factor of both short and long grass in combination with sandy soil, while clay soil had the lowest risk in these combinations. Feeding practice in the paddock revealed feeding directly on the ground to be a risk factor when there was short (1-5 cm) or no grass. Also, no feeding outdoors increased the risk on pastures with short grass, while this had no effect in paddocks with no grass. More than 50% of all horses investigated in this study had sand in the faeces. POTENTIAL RELEVANCE: The identification of risk factors is an important step towards prevention of SGID. Further research is necessary to determine why some horses exhibit more than 5 mm sand in the sedimentation test and whether this is correlated with geophagic behaviour.
|
|
|
Menges, R. W., Furcolow, M. L., Selby, L. A., Habermann, R. T., & Smith, C. D. (1967). Ecologic studies of histoplasmosis. Am J Epidemiol, 85(1), 108–119.
|
|
|
Muscatello, G., Anderson, G. A., Gilkerson, J. R., & Browning, G. F. (2006). Associations between the ecology of virulent Rhodococcus equi and the epidemiology of R. equi pneumonia on Australian thoroughbred farms. Appl Environ Microbiol, 72(9), 6152–6160.
Abstract: The ecology of virulent strains of Rhodococcus equi on horse farms is likely to influence the prevalence and severity of R. equi pneumonia in foals. This study examined the association between the ecology of virulent R. equi and the epidemiology of R. equi pneumonia by collecting air and soil samples over two breeding seasons (28 farm-year combinations) on Thoroughbred breeding farms with different reported prevalences of R. equi pneumonia. Colony blotting and DNA hybridization were used to detect and measure concentrations of virulent R. equi. The prevalence of R. equi pneumonia was associated with the airborne burden of virulent R. equi (both the concentration and the proportion of R. equi bacteria that were virulent) but was not associated with the burden of virulent R. equi in the soil. Univariable screening and multivariable model building were used to evaluate the effect of environmental and management factors on virulent R. equi burdens. Lower soil moisture concentrations and lower pasture heights were significantly associated with elevated airborne concentrations of virulent R. equi, as were the holding pens and lanes, which typically were sandy, dry, and devoid of pasture cover. Few variables appeared to influence concentrations of virulent R. equi in soil. Acidic soil conditions may have contributed to an elevated proportion of virulent strains within the R. equi population. Environmental management strategies that aim to reduce the level of exposure of susceptible foals to airborne virulent R. equi are most likely to reduce the impact of R. equi pneumonia on endemically affected farms.
|
|
|
Takai, S., Narita, K., Ando, K., & Tsubaki, S. (1986). Ecology of Rhodococcus (Corynebacterium) equi in soil on a horse-breeding farm. Vet Microbiol, 12(2), 169–177.
Abstract: The ecology of Rhodococcus (Corynebacterium) equi in soil was studied on a horse-breeding farm. R. equi was cultured from soil at a depth of 0, 10, and 20 cm on the six sites of the farm at monthly intervals for 10 months from March to December of 1983. The highest numbers of R. equi were found in the surface soil. The mean number of bacteria in soil samples at every depth increased remarkably from 0 or 10(2) to 10(4) colony-forming units (CFU) g-1 of soil in the middle of April, and later decreased gradually. R. equi inoculated into six soil exudate broths prepared from surface soils at separate sites yielded suspensions with different optical densities, indicating differences in growth. The distribution of serotypes in the soil was similar to that in the horses on the farm. These findings indicated that R. equi could multiply in the soil and flourish in the cycle existing between horses and their soil environment.
|
|