|
Alexander, F. (1966). A study of parotid salivation in the horse. J Physiol, 184(3), 646–656.
|
|
|
Alexander, F. (1977). The effect of diuretics on the faecal excretion of water and electrolytes in horses. Br J Pharmacol, 60(4), 589–593.
Abstract: 1. The effect on plasma, urinary and faecal electrolytes of frusemide and hydrochlorthiazide was measured in ponies, mean weight 180 kg. 2. The rapid loss in urine of large quantities of sodium had only a small effect on plasma sodium concentration. 3. Faecal sodium excretion was increased substantially after the administration of frusemide. 4. Frusemide increased faecal potassium during the 48 h following administration and faecal water in the 24/48 h period. It also produced a hypopotassaemia. 5. Hydrochlorthiazide increased faecal chloride during the 24 h after administration. 6. Frusemide increased the intestinal transit time of both liquid (polyethylene glycol) and particulate (Cr2O3) markers.
|
|
|
Alexander, F. (1982). Effect of phenylbutazone on electrolyte metabolism in ponies. Vet. Rec., 110(12), 271–272.
Abstract: Phenylbutazone administered in therapeutic doses to ponies decreased urinary sodium and chloride excretion. The volume and osmolality of the urine was unaffected as was potassium excretion. Faecal excretion of chloride decreased and that of potassium increased, while faecal sodium excretion was unaffected. Plasma pH, bicarbonate and total carbon dioxide decreased after phenylbutazone administration. Packed cell volume, plasma sodium, potassium, carbon dioxide tension and chloride were unchanged.
|
|
|
Andrews, F. M., Ralston, S. L., Sommardahl, C. S., Maykuth, P. L., Green, E. M., White, S. L., et al. (1994). Weight, water, and cation losses in horses competing in a three-day event. J Am Vet Med Assoc, 205(5), 721–724.
Abstract: Body weight of 48 horses competing in a 3-day event was measured the day before the event (baseline), following the dressage phase of the event (day 1), after the endurance phases of the event (day 2), and 18 to 24 hours after the endurance phases (day 3). Plasma sodium and potassium concentrations were measured the evening before, immediately after, and 10 minutes after the endurance phases. Total body water, water loss, and net exchangeable cation loss were then calculated. Body weight and total body water were significantly decreased, compared with baseline values, at all times during the event, and significant water loss was detected. The largest changes were recorded after the endurance phases of the event. Water deficits were still detected 18 to 24 hours after the endurance phases of the event. Mean plasma sodium concentration was significantly increased immediately after the endurance phases of the event, compared with concentration measured the evening before, and remained increased after the 10-minute recovery period, presumably because of dehydration. Mean plasma potassium concentration was significantly increased immediately after the endurance phases of the event, compared with concentration measured the evening before, but was not increased after the 10-minute recovery period.
|
|
|
Beerwerth, W., & Schurmann, J. (1969). [Contribution to the ecology of mycobacteria]. Zentralbl Bakteriol [Orig], 211(1), 58–69.
|
|
|
Houpt, K. A., Northrup, N., Wheatley, T., & Houpt, T. R. (1991). Thirst and salt appetite in horses treated with furosemide. J Appl Physiol, 71(6), 2380–2386.
Abstract: When a preliminary experiment in sodium-replete ponies revealed an increase, but not a significant increase, in salt consumption after furosemide treatment, the experiment was repeated using sodium-deficient horses in which aldosterone levels might be expected to be elevated to test the hypothesis that a background of aldosterone is necessary for salt appetite. Ten Standardbred mares were injected intravenously with furosemide or an equivalent volume of 0.9% sodium chloride as a control to test the effect of furosemide on their salt appetite and blood constituents. Sodium intake and sodium loss in urine, as well as water intake and urine output, were measured and compared to determine accuracy of compensation for natriuresis and diuresis. Plasma protein and packed cell volume showed significant increases in response to furosemide treatment (F = 29.31, P less than 0.001 and F = 11.20, P less than 0.001, respectively). There were no significant changes in plasma sodium concentration or osmolality in response to the treatment (P greater than 0.05). The furosemide-treated horses consumed 126 +/- 14.8 g salt, significantly more than when they were given the control injection (94.5 +/- 9.8 g; t = 2.22, P = 0.05). In response to furosemide, horses lost 962 +/- 79.7 and consumed 2,170 +/- 5 meq sodium; however, compared with control, they lost 955 meq more sodium and ingested only 570 meq more sodium, so they were undercompensating for natriuresis. The furosemide-treated horses drank 9.6 +/- 0.8 kg of water, significantly more than when they received the control injection (6.4 +/- 0.8 kg; t = 6.9, P less than 0.001).(ABSTRACT TRUNCATED AT 250 WORDS)
|
|
|
Krzak, W. E., Gonyou, H. W., & Lawrence, L. M. (1991). Wood chewing by stabled horses: diurnal pattern and effects of exercise. J. Anim Sci., 69(3), 1053–1058.
Abstract: Nine yearling horses, stabled in individual stalls, were used in a trial to determine the diurnal pattern of wood chewing and the effects of exercise on this behavior. The trial was a Latin square design conducted over three 2-wk periods during which each horse was exposed to each of the three following treatments: 1) no exercise (NE), 2) exercise after the morning feeding (AM), and 3) exercise in the afternoon (PM). Horses were fed a complete pelleted feed in the morning and both pelleted feed and long-stemmed hay in the afternoon. Exercise consisted of 45 min on a mechanical walker followed by 45 min in a paddock with bare soil. Each stall was equipped with two untreated spruce boards during each period for wood chewing. Wood chewing was evaluated by videotaping each horse for 22 h during each period, determining the weight and volume of the boards before and after each period, and by visual appraisal of the boards. Intake of trace mineralized salt was also measured. Wood chewing occurred primarily between 2200 and 1200. All measures of wood chewing were correlated when totals for the entire 6 wk were analyzed. When analysis was performed on 2-wk values, videotape results were not correlated with volume or weight loss of boards. Horses chewed more when on the NE treatment (511 s/d) than when on AM or PM (57 and 136 s/d, respectively; P less than .05). Salt intake tended to be greater for NE than for the other treatments (P less than .10).(ABSTRACT TRUNCATED AT 250 WORDS)
|
|
|
Nicol, C. J., Adachi, M., Akiyama, T. E., & Gonzalez, F. J. (2005). PPARgamma in endothelial cells influences high fat diet-induced hypertension. Am J Hypertens, 18(4 Pt 1), 549–556.
Abstract: BACKGROUND: Peroxisome proliferator-activated receptor gamma (PPARgamma) ligands improve human hypertension. However, the mechanism and site of this effect remains unknown, confounded by PPARgamma expression in many cell types, including endothelial cells (ECs). METHODS: To evaluate the vascular role of PPARgamma we used a conditional null mouse model. Specific disruption of PPARgamma in ECs was created by crossing Tie2-Cre+ transgenic (T2T+) and PPARgamma-floxed (fl/fl) mice to generate PPARgamma (fl/fl)T2T+ (PPARgamma E-null) mice. Conscious 8- to 12-week-old congenic PPARgamma (fl/fl)Cre- (wild type) and PPARgamma E-null mice were examined for changes in systolic blood pressure (BP) and heart rate (HR), untreated, after 2 months of salt-loading (drinking water), and after treatment for 3 months with high fat (HF) diet alone or supplemented during the last 2 weeks with rosiglitazone (3 mg/kg/d). RESULTS: Untreated PPARgamma E-nulls were phenotypically indistinguishable from wild-type littermates. However, compared to similarly treated wild types, HF-treated PPARgamma E-nulls had significantly elevated systolic BP not seen after normal diet or salt-loading. Despite sex-dependent baseline differences, salt-loaded and HF-treated PPARgamma E-nulls of either sex had significantly elevated HR versus wild types. Interestingly, rosiglitazone improved serum insulin levels, but not HF diet-induced hypertension, in PPARgamma E-null mice. CONCLUSIONS: These results suggest that PPARgamma in ECs not only is an important regulator of hypertension and HR under stressed conditions mimicking those arising in type 2 diabetics, but also mediates the antihypertensive effects of rosiglitazone. These data add evidence supporting a beneficial role for PPARgamma-specific ligands in the treatment of hypertension, and suggest therapeutic strategies targeting ECs may prove useful.
|
|
|
Rosa, P. A. J., Azevedo, A. M., & Aires-Barros, M. R. (2007). Application of central composite design to the optimisation of aqueous two-phase extraction of human antibodies. J Chromatogr A, 1141(1), 50–60.
Abstract: The partition of human antibodies in aqueous two-phase systems (ATPSs) of polyethylene glycol (PEG) and phosphate was systematically studied using first pure proteins systems and then an artificial mixture of proteins containing 1mg/ml human immunoglobulin G (IgG), 10mg/ml serum albumin and 2mg/ml myoglobin. Preliminary results obtained using pure proteins systems indicated that the PEG molecular weight and concentration, the pH value and the salts concentration had a pronounced effect on the partitioning behaviour of all proteins. For high ionic strengths and pH values higher than the isoelectric point (pI) of the contaminant proteins, IgG could be selectively recovered on the top phase. According to these results, a face centred composite design was performed in order to optimise the purification of IgG from the mixture of proteins. The optimal conditions for the isolation of IgG were observed for high concentrations of NaCl and low concentrations of both phase forming components. The best purification was achieved using an ATPS containing 8% (w/w) PEG 3350, 10% (w/w) phosphate pH 6 and 15% (w/w) NaCl. A recovery yield of 101+/-7%, a purity of 99+/-0% and a yield of native IgG of 97+/-4% were obtained. Back extraction studies of IgG to a new phosphate phase were performed and higher yields were obtained using 10% phosphate buffer at pH 6. The total extraction yield was 76% and the purity 100%.
|
|
|
Sufit, E., Houpt, K. A., & Sweeting, M. (1985). Physiological stimuli of thirst and drinking patterns in ponies. Equine Vet J, 17(1), 12–16.
Abstract: The stimuli that elicit thirst were studied in four ponies. Nineteen hours of water deprivation produced an increase in plasma protein from 67 +/- 0.1 g/litre to 72 +/- 2 g/litre, a mean (+/- se) increase in plasma sodium from 139 +/- 3 to 145 +/- 2 mmol/litre and an increase in plasma osmolality from 297 +/- 1 to 306 +/- 2 mosmol/litre. Undeprived ponies drank 1.5 +/- 0.9 kg/30 mins; 19 h deprived ponies drank 10.2 +/- 2.5 kg/30 mins and corrected the deficits in plasma protein, plasma sodium and plasma osmolality as well as compensating for the water they would have drunk during the deprivation period. In order to determine if an increase in plasma osmolality would stimulate thirst, 250 ml of 15 per cent sodium chloride was infused intravenously. The ponies drank when osmolality increased 3 per cent and when plasma sodium rose from 136 +/- 3 mmol/litre to 143 +/- 3 mmol/litre. Ponies infused with 15 per cent sodium chloride drank 2.9 +/- 0.7 kg; those infused with 0.9 per cent sodium chloride drank 0.7 +/- 0.5 kg. In order to determine if a decrease in plasma volume would stimulate thirst, ponies were injected with 1 or 2 mg/kg bodyweight (bwt) frusemide. Plasma protein rose from 68 +/- 2 g/litre pre-injection to 75 +/- 2 g/litre 1 h after 1 mg/kg bwt frusemide and to 81 +/- 1 g/litre 1 h after 2 mg/kg bwt frusemide.(ABSTRACT TRUNCATED AT 250 WORDS)
|
|