|
Beery, A. K., & Kaufer, D. (2015). Stress, social behavior, and resilience: Insights from rodents. Neurobiol. Stress, 1(Stress Resilience), 116–127.
Abstract: The neurobiology of stress and the neurobiology of social behavior are deeply intertwined. The social environment interacts with stress on almost every front: social interactions can be potent stressors; they can buffer the response to an external stressor; and social behavior often changes in response to stressful life experience. This review explores mechanistic and behavioral links between stress, anxiety, resilience, and social behavior in rodents, with particular attention to different social contexts. We consider variation between several different rodent species and make connections to research on humans and non-human primates.
|
|
|
Hoshaw, B. A., Evans, J. C., Mueller, B., Valentino, R. J., & Lucki, I. (2006). Social competition in rats: Cell proliferation and behavior. Behav. Brain. Res., 175(2), 343–351.
Abstract: Behavioral and physiological changes were studied following prolonged exposure to social competition in pairs of non-food-deprived rats competing daily for a limited supply of graham cracker crumbs. Stable dominant-subordinate relationships developed in most pairs, as measured by feeding time, which were maintained over a 5-6-week study period. In other behavioral tests, subordinates demonstrated a decreased latency to immobility in the forced swim test compared with dominants, but no difference in locomotor activity. Subordinates had increased bladder size, decreased adrenal gland size, and a 35% reduction of hippocampus cell proliferation compared with the dominant member. Therefore, prolonged social competition, based on restricted access to palatable substances, produced hierarchies among individuals that were associated with differences in behavior, physiology and hippocampal cell proliferation.
|
|
|
Kotrschal, K., Schöberl, I., Bauer, B., Thibeaut, A. - M., & Wedl, M. (2009). Dyadic relationships and operational performance of male and female owners and their male dogs. Behav. Process., 81(3), 383–391.
Abstract: In the paper we investigate how owner personality, attitude and gender influence dog behavior, dyadic practical functionality and the level of dog salivary cortisol. In three meetings, 12 female and 10 male owners of male dogs answered questionnaires including the Neo-FFI human personality inventory. Their dyadic behavior was video-taped in a number of test situations, and saliva samples were collected. Owners who scored highly in neuroticism (Neo-FFI dimension one) viewed their dogs as social supporters and spent much time with them. Their dogs had low baseline cortisol levels, but such dyads were less successful in the operational task. Owners who scored highly in extroversion (Neo-FFI dimension two) appreciated shared activities with their dogs which had relatively high baseline cortisol values. Dogs that had female owners were less sociable-active (dog personality axis 1) than dogs that had male owners. Therefore, it appears that owner gender and personality influences dyadic interaction style, dog behavior and dyadic practical functionality.
|
|
|
Ostner, J., Heistermann, M., & Schülke, O. (2008). Dominance, aggression and physiological stress in wild male Assamese macaques (Macaca assamensis). Hormones and Behavior, 54(5), 613–619.
Abstract: In group-living animals relative rank positions are often associated with differences in glucocorticoid output. During phases of social stability, when dominance positions are clear and unchallenged, subordinates often face higher costs in terms of social stress than dominant individuals. In this study we test this prediction and examine additional potential correlates of stress, such as reproductive season, age and amount of aggression received in wild, seasonally breeding Assamese macaques (Macaca assamensis). During a mating and a non-mating season we collected 394 h of focal observational data and 440 fecal samples of six adult and six large subadult males living in a multimale-multifemale group in their natural habitat in northeastern Thailand. The mating season was characterized by a general increase in aggressive behavior and glucocorticoid excretion across all males compared to the non-mating season. Among adult males, mating season glucocorticoid levels were significantly negatively related with dominance rank and positively with the amount of aggression received. Both relationships were non-significant among large subadult males. Thus, our results suggest that in adult Assamese macaques a high dominance position is not associated with high costs. Low costs of dominance might be induced by strong social bonds among top-ranking males, which exchange frequent affiliative interactions and serve as allies in coalitionary aggression against potentially rank-challenging subordinate males.
|
|