|
Guttridge, T. L., Dijk, S., Stamhuis, E. J., Krause, J., Gruber, S. H., & Brown, C. (2013). Social learning in juvenile lemon sharks, Negaprion brevirostris. Animal Cognition, 16(1), 55–64.
Abstract: Social learning is taxonomically widespread and can provide distinct behavioural advantages, such as in finding food or avoiding predators more efficiently. Although extensively studied in bony fishes, no such empirical evidence exists for cartilaginous fishes. Our aim in this study was to experimentally investigate the social learning capabilities of juvenile lemon sharks, Negaprion brevirostris. We designed a novel food task, where sharks were required to enter a start zone and subsequently make physical contact with a target in order to receive a food reward. Naive sharks were then able to interact with and observe (a) pre-trained sharks, that is, ‘demonstrators’, or (b) sharks with no previous experience, that is, ‘sham demonstrators’. On completion, observer sharks were then isolated and tested individually in a similar task. During the exposure phase observers paired with ‘demonstrator’ sharks performed a greater number of task-related behaviours and made significantly more transitions from the start zone to the target, than observers paired with ‘sham demonstrators’. When tested in isolation, observers previously paired with ‘demonstrator’ sharks completed a greater number of trials and made contact with the target significantly more often than observers previously paired with ‘sham demonstrators’. Such experience also tended to result in faster overall task performance. These results indicate that juvenile lemon sharks, like numerous other animals, are capable of using socially derived information to learn about novel features in their environment. The results likely have important implications for behavioural processes, ecotourism and fisheries.
|
|
|
Leadbeater, E. (2015). What evolves in the evolution of social learning? J Zool, 295(1), 4–11.
Abstract: Social learning is fundamental to social life across the animal kingdom, but we still know little about how natural selection has shaped social learning abilities on a proximate level. Sometimes, complex social learning phenomena can be entirely explained by Pavlovian processes that have little to do with the evolution of sociality. This implies that the ability to learn socially could be an exaptation, not an adaptation, to social life but not that social learning abilities have been left untouched by natural selection. I discuss new empirical evidence for associative learning in social information use, explain how natural selection might facilitate the associative learning process and discuss why such studies are changing the way that we think about social learning.
|
|