|
B. Agnetta,, B. Hare,, & M. Tomasello,. (2000). Cues to food location that domestic dogs (Canis familiaris) of different ages do and do not use. Anim. Cogn., 3(2), 107–112.
Abstract: Autoren
B. Agnetta, B. Hare, M. Tomasello
Zusammenfassung
The results of three experiments are reported. In the main study, a human experimenter presented domestic dogs (Canis familiaris) with a variety of social cues intended to indicate the location of hidden food. The novel findings of this study were: (1) dogs were able to use successfully several totally novel cues in which they watched a human place a marker in front of the target location; (2) dogs were unable to use the marker by itself with no behavioral cues (suggesting that some form of human behavior directed to the target location was a necessary part of the cue); and (3) there were no significant developments in dogs' skills in these tasks across the age range 4 months to 4 years (arguing against the necessity of extensive learning experiences with humans). In a follow-up study, dogs did not follow human gaze into “empty space” outside of the simulated foraging context. Finally, in a small pilot study, two arctic wolves (Canis lupus) were unable to use human cues to locate hidden food. These results suggest the possibility that domestic dogs have evolved an adaptive specialization for using human-produced directional cues in a goal-directed (especially foraging) context. Exactly how they understand these cues is still an open question.
Schlüsselwörter
Key words Dogs – Arctic wolves – Social cognition – Gaze following – Communication
|
|
|
Brubaker, L., & Udell, M. A. R. (2016). Cognition and learning in horses (Equus caballus): What we know and why we should ask more. Behavioural Processes, 126, 121–131.
Abstract: Abstract Horses (Equus caballus) have a rich history in their relationship with humans. Across different cultures and eras they have been utilized for work, show, cultural rituals, consumption, therapy, and companionship and continue to serve in many of these roles today. As one of the most commonly trained domestic animals, understanding how horses learn and how their relationship with humans and other horses impacts their ability to learn has implications for horse welfare, training, husbandry and management. Given that unlike dogs and cats, domesticated horses have evolved from prey animals, the horse-human relationship poses interesting and unique scientific questions of theoretical value. There is still much to be learned about the cognition and behaviour of horses from a scientific perspective. This review explores current research within three related areas of horse cognition: human-horse interactions, social learning and independent learning in horses. Research on these topics is summarized and suggestions for future research are provided.
|
|
|
Bräuer, J., Call, J., & Tomasello, M. (2008). Chimpanzees do not take into account what others can hear in a competitive situation. Anim. Cogn., 11(1), 1435–9448.
Abstract: Chimpanzees (Pan troglodytes) know what others can and cannot see in a competitive situation. Does this reflect a general understanding the perceptions of others` In a study by Hare et al. (2000) pairs of chimpanzees competed over two pieces of food. Subordinate individuals preferred to approach food that was behind a barrier that the dominant could not see, suggesting that chimpanzees can take the visual perspective of others. We extended this paradigm to the auditory modality to investigate whether chimpanzees are sensitive to whether a competitor can hear food rewards being hidden. Results suggested that the chimpanzees did not take what the competitor had heard into account, despite being able to locate the hiding place themselves by the noise.
|
|
|
Burla, J. - B., Siegwart, J., & Nawroth, C. (2018). Human Demonstration Does Not Facilitate the Performance of Horses (Equus caballus) in a Spatial Problem-Solving Task. Animal, 8(6), 96.
Abstract: Horses’ ability to adapt to new environments and to acquire new information plays an important role in handling and training. Social learning in particular would be very adaptive for horses as it enables them to flexibly adjust to new environments. In the context of horse handling, social learning from humans has been rarely investigated but could help to facilitate management practices. We assessed the impact of human demonstration on the spatial problem-solving abilities of horses during a detour task. In this task, a bucket with a food reward was placed behind a double-detour barrier and 16 horses were allocated to two test groups of 8 horses each. One group received a human demonstration of how to solve the spatial task while the other group received no demonstration. We found that horses did not solve the detour task more often or faster with human demonstration. However, both test groups improved rapidly over trials. Our results suggest that horses prefer to use individual rather than social information when solving a spatial problem-solving task
|
|
|
Cooper, J. J., Ashton, C., Bishop, S., West, R., Mills, D. S., & Young, R. J. (2003). Clever hounds: social cognition in the domestic dog (Canis familiaris). Appl. Anim. Behav. Sci., 81(3), 229–244.
Abstract: This paper reviews the reasons why domestic dogs make good models to investigate cognitive processes related to social living and describes experimental approaches that can be adopted to investigate such processes in dogs. Domestic dogs are suitable models for investigating social cognition skills for three broad reasons. First, dogs originated from wolves, social animals that engage in a number of co-operative behaviours, such as hunting and that may have evolved cognitive abilities that help them predict and interpret the actions of other animals. Second, during domestication dogs are likely to have been selected for mental adaptations for their roles in human society such as herding or companionship. Third, domestic dogs live in a human world and “enculturation” may facilitate the development of relevant mental skills in dogs. Studies of social cognition in animals commonly use experimental paradigms originally developed for pre-verbal human infants. Preferential gaze, for example, can be used as a measure of attention or “surprise” in studies using expectancy violation. This approach has been used to demonstrate simple numerical competence in dogs. Dogs also readily use both conspecific and human social signals (e.g. looking or pointing) as information sources to locate hidden rewards such as food or favourite toys. Such abilities make dogs particularly good models for investigating perspective-taking tasks, where animals are required to discriminate between apparently knowledgeable and apparently ignorant informants.
|
|
|
Defolie, C., Malassis, R., Serre, M., & Meunier, H. (2015). Tufted capuchins (Cebus apella) adapt their communicative behaviour to human’s attentional states. Anim. Cogn., 18(3), 747–755.
Abstract: Animal communication has become a widely studied field of research, especially because of the associated debates on the origin of human language. Due to their phylogenetic proximity with humans, non-human primates represent a suitable model to investigate the precursors of language. This study focuses on the perception of the attentional states of others, an important prerequisite to intentional communication. We investigated whether capuchins (Cebus apella) produce a learnt pointing gesture towards a hidden and unreachable food reward as a function of the attentional status of the human experimenter. For that purpose, we tested five subjects that we first trained to indicate by a pointing gesture towards the human partner the position of a reward hidden by an assistant. Then, capuchins were tested in two experimental conditions randomly ordered. In the first condition—motivation trial—the experimenter was attentive to the subject gestures and rewarded him immediately when it pointed towards the baited cylinder. During the second condition—test trial—the experimenter adopted one of the following attention states and the subject was rewarded after 10 s has elapsed, regardless of the subject’s behaviour. Five attentional states were tested: (1) experimenter absent, (2) experimenter back to the monkey, (3) experimenter’s head away, (4) experimenter watching above the monkey, and (5) experimenter watching the monkey face. Our results reveal a variation in our subjects’ communicative behaviours with a discrimination of the different postural clues (body and head orientation) available in our experimental conditions. This study suggests that capuchins can flexibly use a communicative gesture to adapt to the attentional state of their partner and provides evidence that acquired communicative gestures of monkeys might be used intentionally.
|
|
|
Gaunet, F. (2010). How do guide dogs and pet dogs (Canis familiaris) ask their owners for their toy and for playing? Anim. Cogn., 13(2), 311–323.
Abstract: Abstract When apes are not fully understood by humans, they persist with attempts to communicate, elaborating their behaviours to better convey their meaning. Such abilities have never been investigated in dogs. The present study aimed to clarify any effect of the visual attentional state of the owner on dogs’ (Canis familiaris) social-communicative signals for interacting with humans, and to determine whether dogs persist and elaborate their behaviour in the face of failure to communicate a request. Gaze at a hidden target or at the owner, gaze alternation between a hidden target and the owner, vocalisations and contacts in 12 guide and 12 pet dogs were analysed (i) when the dogs were asked by their owners (blind or sighted) to fetch their inaccessible toy and (ii) when the dogs were subsequently given an unfamiliar object (apparent unsuccessful communication) or their toy (apparent successful communication). No group differences were found, indicating no effect of the visual status of the owner on the dogs’ socio-communicative modes (i.e. no sensitivity to human visual attention). Results, however, suggest that the dogs exhibited persistence (but not elaboration) in their “showing” behaviours in each condition, except that in which the toy was returned. Thus, their communication was about a specific item in space (the toy). The results suggest that dogs possess partially intentional non-verbal deictic abilities: (i) to get their inaccessible toy, the dogs gazed at their owners as if to trigger their attention; gaze alternation between the owner and the target direction, and two behaviours directed at the target were performed, apparently to indicate the location of the hidden toy; (ii) after the delivery of the toy, the dogs behaved as if they returned to the play routine, gazing at their owner whilst holding their toy. In conclusion, this study shows that dogs possess partially intentional non-verbal deictic abilities: they exhibit successive visual orienting between a partner and objects, apparent attention-getting behaviours, no sensitivity to the visual status of humans for communication, and persistence in (but no elaboration of) communicative behaviours when apparent attempts to “manipulate” the human partner fail.
|
|
|
Hattori, Y., Kuroshima, H., & Fujita, K. (2007). I know you are not looking at me: capuchin monkeys` ? (Cebus apella) sensitivity to human attentional states. Anim. Cogn., 10(2), 141–148.
Abstract: Abstract The present study asked whether capuchin monkeys recognize human attentional states. The monkeys requested food from the experimenter by extending an arm (pointing) toward the baited one of two transparent cups. On regular trials the experimenter gave the food immediately to the monkeys upon pointing but on randomly inserted test trials she ignored the pointing for 5 s during which she displayed different attentional states. The monkeys looked at the experimenter's face longer when she looked at the monkeys than when she looked at the ceiling in Experiment 1, and longer when she oriented her head midway between the two cups with eyes open than when she did so with eyes closed in Experiment 2. However, the monkeys showed no differential pointing in these conditions. These results suggest that capuchins are sensitive to eye direction but this sensitivity does not lead to differential pointing trained in laboratory experiments. Furthermore, to our knowledge, this is the first firm behavioral evidence that non-human primates attend to the subtle states of eyes in a food requesting task.
|
|
|
Kaminski, J., Call, J., & Tomasello, M. (2006). Goats' behaviour in a competitive food paradigm: Evidence for perspective taking? Behaviour, 143, 1341–1356.
Abstract: Many mammalian species are highly social, creating intra-group competition for such things as food and mates. Recent research with nonhuman primates indicates that in competitive situations individuals know what other individuals can and cannot see, and they use this knowledge to their advantage in various ways. In the current study, we extended these findings to a non-primate species, the domestic goat, using the conspecific competition paradigm developed by Hare et al. (2000). Like chimpanzees and some other nonhuman primates, goats live in fission-fusion societies, form coalitions and alliances, and are known to reconcile after fights. In the current study, a dominant and a subordinate individual competed for food, but in some cases the subordinate could see things that the dominant could not. In the condition where dominants could only see one piece of food but subordinates could see both, subordinates' preferences depended on whether they received aggression from the dominant animal during the experiment. Subjects who received aggression preferred the hidden over the visible piece of food, whereas subjects who never received aggression significantly preferred the visible piece. By using this strategy, goats who had not received aggression got significantly more food than the other goats. Such complex social interactions may be supported by cognitive mechanisms similar to those of chimpanzees. We discuss these results in the context of current issues in mammalian cognition and socio-ecology.
|
|
|
Kaminski, J., Pitsch, A., & Tomasello, M. (2013). Dogs steal in the dark. Animal Cognition, 16(3), 385–394.
Abstract: All current evidence of visual perspective taking in dogs can possibly be explained by dogs reacting to certain stimuli rather than understanding what others see. In the current study, we set up a situation in which contextual information and social cues are in conflict. A human always forbade the dog from taking a piece of food. The part of the room being illuminated was then varied, for example, either the area where the human was seated or the area where the food was located was lit. Results show that dogs steal significantly more food when it is dark compared to when it is light. While stealing forbidden food the dog’s behaviour also depends on the type of illumination in the room. Illumination around the food, but not the human, affected the dogs’ behaviour. This indicates that dogs do not take the sight of the human as a signal to avoid the food. It also cannot be explained by a low-level associative rule of avoiding illuminated food which dogs actually approach faster when they are in private. The current finding therefore raises the possibility that dogs take into account the human’s visual access to the food while making their decision to steal it.
|
|