|
Anderson, W. D., & Summers, C. H. (2007). Neuroendocrine Mechanisms, Stress Coping Strategies, and Social Dominance: Comparative Lessons about Leadership Potential. Ann Am Acad Polit Soc Sci, 614(1), 102–130.
Abstract: The authors examine dominance and subordination in the social psychology, political science, and biology literatures. Using Summers and Winberg (2006) as a guide, the authors suggest that extreme dominance or subordination phenotypes--including social dominance orientation and right-wing authoritarianism--are determined by an organism's genetic predispositions, motivations, stress responses, and long-term hormone release and uptake states. The authors offer hypotheses about the likely neurochemical profiles for each of these extreme dominance and subordination phenotypes and suggest two designs that begin to test these hypotheses.
|
|
|
Barette, C., & Vandal, D. (1986). Social rank, dominance, antler size, and access to food in snow-bound wild woodland caribou. Behaviour, 97(1-2), 118–146.
Abstract: We spent two winters studying the social behaviour of wild woodland caribou (Rangifer tarandus caribou) at a time when their main food (ground lichens; Cladina sp.) is available only at snow craters dug by the animals. The competition for access to such craters was severe, the animals constantly trying to take over the craters of others. During a two-month period when a group maintained a constant size (20) and composition (all age-sex classes represented), we could rank the animals in a rather linear dominance hierarchy (Landau's index = 0.87). Rank was correlated with access to resources, percent of time spent active, and percent of time feeding in craters. It was also correlated with age and antler size. However, rank is not an attribute of individuals, but of a relationship between individuals. As such it is only an intervening variable between physical attributes and access to resources, a variable whose value has meaning only within a given group. Among the three attributes studied (age, sex, antler size), the latter was by far the best predictor of the occurrence and outcome of interactions. Between two individuals within any of the three age-sex classes studied (adult and yearling males and adult females), the one with larger antlers initiated significantly more often, escalated its aggression (to the point of hitting the target) less often, and enjoyed a higher success rate in obtaining resources. When their antlers were larger than those of an adult male target (i.e. males that had shed their antlers), adult females won almost all their interactions with adult males even though they escalated only one fourth of them. This clarifies the long-standing speculation that female caribou have antlers and shed them later than males, in order to overcome their sexual handicap in competition for food in the winter. We conclude that the link between rank and dominance of an individual on one hand, and some of its attributes on the other (e.g. sex, age, weight, antler size) is fundamentally realized by the animal itself through its active preference for targets it is likely to beat, i.e. targets with smaller antlers.
|
|
|
Beaver, B. V. (1981). Problems & values associated with dominance. Vet Med Small Anim Clin, 76(8), 1129–1131.
|
|
|
Bergman, T. J., Beehner, J. C., Cheney, D. L., & Seyfarth, R. M. (2003). Hierarchical classification by rank and kinship in baboons. Science, 302(5648), 1234–1236.
Abstract: Humans routinely classify others according to both their individual attributes, such as social status or wealth, and membership in higher order groups, such as families or castes. They also recognize that people's individual attributes may be influenced and regulated by their group affiliations. It is not known whether such rule-governed, hierarchical classifications are specific to humans or might also occur in nonlinguistic species. Here we show that baboons recognize that a dominance hierarchy can be subdivided into family groups. In playback experiments, baboons respond more strongly to call sequences mimicking dominance rank reversals between families than within families, indicating that they classify others simultaneously according to both individual rank and kinship. The selective pressures imposed by complex societies may therefore have favored cognitive skills that constitute an evolutionary precursor to some components of human cognition.
|
|
|
Biro, D., Sumpter, D. J. T., Meade, J., & Guilford, T. (2006). From Compromise to Leadership in Pigeon Homing. Curr Biol, 16(21), 2123–2128.
Abstract: Summary A central problem faced by animals traveling in groups is how navigational decisions by group members are integrated, especially when members cannot assess which individuals are best informed or have conflicting information or interests , , , and . Pigeons are now known to recapitulate faithfully their individually distinct habitual routes home , and , and this provides a novel paradigm for investigating collective decisions during flight under varying levels of interindividual conflict. Using high-precision GPS tracking of pairs of pigeons, we found that if conflict between two birds' directional preferences was small, individuals averaged their routes, whereas if conflict rose over a critical threshold, either the pair split or one of the birds became the leader. Modeling such paired decision-making showed that both outcomes--compromise and leadership--could emerge from the same set of simple behavioral rules. Pairs also navigated more efficiently than did the individuals of which they were composed, even though leadership was not necessarily assumed by the more efficient bird. In the context of mass migration of birds and other animals, our results imply that simple self-organizing rules can produce behaviors that improve accuracy in decision-making and thus benefit individuals traveling in groups , and .
|
|
|
Broom, M. (2002). A unified model of dominance hierarchy formation and maintenance. J. Theor. Biol., 219(1), 63–72.
Abstract: In many different species it is common for animals to spend large portions of their lives in groups. Such groups need to divide available resources amongst the individuals they contain and this is often achieved by means of a dominance hierarchy. Sometimes hierarchies are stable over a long period of time and new individuals slot into pre-determined positions, but there are many situations where this is not so and a hierarchy is formed out of a group of individuals meeting for the first time. There are several different models both of the formation of such dominance hierarchies and of already existing hierarchies. These models often treat the two phases as entirely separate, whereas in reality, if there is a genuine formation phase to the hierarchy, behaviour in this phase will be governed by the rewards available, which in turn depends upon how the hierarchy operates once it has been formed. This paper describes a method of unifying models of these two distinct phases, assuming that the hierarchy formed is stable. In particular a framework is introduced which allows a variety of different models of each of the two parts to be used in conjunction with each other, thus enabling a wide range of situations to be modelled. Some examples are given to show how this works in practice.
|
|
|
Cancedda, M. (1990). [Social and behavioral organization of horses on the Giara (Sardinia): distribution and aggregation]. Boll Soc Ital Biol Sper, 66(11), 1089–1096.
Abstract: In this paper some considerations on the environment of the 42 Kmq of the volcanic-basaltic Giara tableland are discussed. Conditioning by the environment and its effect on the distribution of a population of 712 horses is illustrated in view of their social and behavioural organization.
|
|
|
Chase, I. D., Tovey, C., Spangler-Martin, D., & Manfredonia, M. (2002). Individual differences versus social dynamics in the formation of animal dominance hierarchies. Proc. Natl. Acad. Sci. U.S.A., 99(8), 5744–5749.
Abstract: Linear hierarchies, the classical pecking-order structures, are formed readily in both nature and the laboratory in a great range of species including humans. However, the probability of getting linear structures by chance alone is quite low. In this paper we investigate the two hypotheses that are proposed most often to explain linear hierarchies: they are predetermined by differences in the attributes of animals, or they are produced by the dynamics of social interaction, i.e., they are self-organizing. We evaluate these hypotheses using cichlid fish as model animals, and although differences in attributes play a significant part, we find that social interaction is necessary for high proportions of groups with linear hierarchies. Our results suggest that dominance hierarchy formation is a much richer and more complex phenomenon than previously thought, and we explore the implications of these results for evolutionary biology, the social sciences, and the use of animal models in understanding human social organization.
|
|
|
Cheney, D., Seyfarth, R., & Smuts, B. (1986). Social relationships and social cognition in nonhuman primates. Science, 234(4782), 1361–1366.
Abstract: Complex social relationships among nonhuman primates appear to contribute to individual reproductive success. Experiments with and behavioral observations of natural populations suggest that sophisticated cognitive mechanisms may underlie primate social relationships. Similar capacities are usually less apparent in the nonsocial realm, supporting the view that at least some aspects of primate intelligence evolved to solve the challenges of interacting with conspecifics.
|
|
|
Clutton-Brock, T. H., Greenwood, P. J., & Powell, R. P. (1976). Ranks and relationships in Highland ponies and Highland Cows. Z. Tierpsychol., 41(2), 202–216.
Abstract: Recent studies of primates have questioned the importance of dominance hierarchies in groups living under natural conditions. In a herd of Highland ponies and one of Highland cattle grazing under free-range conditions on the Isle of Rhum (Inner Hebrides) well defined hierarchies were present. The provision of food produced a marked increase in the frequency of agonistic interactions but had no effect on the rank systems of the two herds. While rank was clearly important in affecting the distribution of agonistic interactions, it was poorly related to behaviour in non-agonistic situations.
|
|