|
Adolphs, R. (2003). Cognitive neuroscience of human social behaviour. Nat Rev Neurosci, 4(3), 165–178.
Abstract: We are an intensely social species--it has been argued that our social nature defines what makes us human, what makes us conscious or what gave us our large brains. As a new field, the social brain sciences are probing the neural underpinnings of social behaviour and have produced a banquet of data that are both tantalizing and deeply puzzling. We are finding new links between emotion and reason, between action and perception, and between representations of other people and ourselves. No less important are the links that are also being established across disciplines to understand social behaviour, as neuroscientists, social psychologists, anthropologists, ethologists and philosophers forge new collaborations.
|
|
|
Albentosa, M. J., Kjaer, J. B., & Nicol, C. J. (2003). Strain and age differences in behaviour, fear response and pecking tendency in laying hens. Br Poult Sci, 44(3), 333–344.
Abstract: 1. Behaviours associated with a high or low tendency to feather peck could be used as predictors of feather pecking behaviour in selective breeding programmes. This study investigated how strain and age at testing influenced responses in behavioural tests. 2. Four layer-type strains (ISA Brown, Columbian Blacktail, Ixworth and a high feather pecking (HP) and a low feather pecking (LP) line of White Leghorn) were reared in 6 same-strain/line pens of 8 birds from one day old. Birds in half the pens were given an open field test, a novel object test and a test with loose feather bundles between 4 and 12 weeks of age and a tonic immobility (TI) test at 13 weeks of age. All pens were tested with fixed feather bundles at 26 weeks, and undisturbed behaviour in the home pens was videoed at 1 and 27 weeks of age. Daily records of plumage damage were used as an indicator of feather pecking activity in the home pens. 3. Strain did not influence novel object test, open field test or loose feather test behaviour, although age effects in all three tests indicated a reduction in fearfulness and/or an increase in exploratory behaviour with increasing age. 4. White Leghorns showed longer TI durations than the other strains but less pecking at fixed feather bundles than ISA Browns and Columbian Blacktails. 5. There were few associations between behaviour in the 5 different tests, indicating that birds did not have overall behavioural traits that were consistent across different contexts. This suggests hens cannot easily be categorised into different behavioural 'types', based on their test responses and casts doubt on the usefulness of tests as predictors of feather pecking.
|
|
|
Alexander, B. K., & Bowers, J. M. (1969). Social organization of a troop of Japanese monkeys in a two-acre enclosure. Folia Primatol (Basel), 10(3), 230–242.
|
|
|
Amdam, G. V., Csondes, A., Fondrk, M. K., & Page, R. E. J. (2006). Complex social behaviour derived from maternal reproductive traits. Nature, 439(7072), 76–78.
Abstract: A fundamental goal of sociobiology is to explain how complex social behaviour evolves, especially in social insects, the exemplars of social living. Although still the subject of much controversy, recent theoretical explanations have focused on the evolutionary origins of worker behaviour (assistance from daughters that remain in the nest and help their mother to reproduce) through expression of maternal care behaviour towards siblings. A key prediction of this evolutionary model is that traits involved in maternal care have been co-opted through heterochronous expression of maternal genes to result in sib-care, the hallmark of highly evolved social life in insects. A coupling of maternal behaviour to reproductive status evolved in solitary insects, and was a ready substrate for the evolution of worker-containing societies. Here we show that division of foraging labour among worker honey bees (Apis mellifera) is linked to the reproductive status of facultatively sterile females. We thereby identify the evolutionary origin of a widely expressed social-insect behavioural syndrome, and provide a direct demonstration of how variation in maternal reproductive traits gives rise to complex social behaviour in non-reproductive helpers.
|
|
|
Amé, J. - M., Halloy, J., Rivault, C., Detrain, C., & Deneubourg, J. L. (2006). Collegial decision making based on social amplification leads to optimal group formation. Proc. Natl. Acad. Sci. U.S.A., 103(15), 5835–5840.
Abstract: Group-living animals are often faced with choosing between one or more alternative resource sites. A central question in such collective decision making includes determining which individuals induce the decision and when. This experimental and theoretical study of shelter selection by cockroach groups demonstrates that choices can emerge through nonlinear interaction dynamics between equal individuals without perfect knowledge or leadership. We identify a simple mechanism whereby a decision is taken on the move with limited information and signaling and without comparison of available opportunities. This mechanism leads to optimal mean benefit for group individuals. Our model points to a generic self-organized collective decision-making process independent of animal species.
|
|
|
Anderson, J. R. (1995). Self-recognition in dolphins: credible cetaceans; compromised criteria, controls, and conclusions. Conscious Cogn, 4(2), 239–243.
|
|
|
Anderson, J. R., Kuroshima, H., Kuwahata, H., & Fujita, K. (2004). Do squirrel monkeys (Saimiri sciureus) and capuchin monkeys (Cebus apella) predict that looking leads to touching? Anim. Cogn., 7(3), 185–192.
Abstract: Squirrel monkeys (Saimiri sciureus) and capuchin monkeys (Cebus apella) were tested using an expectancy violation procedure to assess whether they use an actor's gaze direction, signaled by congruent head and eye orientation, to predict subsequent behavior. The monkeys visually habituated to a repeated sequence in which the actor (a familiar human or a puppet) looked at an object and then picked it up, but they did not react strongly when the actor looked at an object but then picked up another object. Capuchin monkeys' responses in the puppet condition were slightly more suggestive of expectancy. There was no differential responding to congruent versus incongruent look-touch sequences when familiarization trials were omitted. The weak findings contrast with a strongly positive result previously reported for tamarin monkeys. Additional evidence is required before concluding that behavior prediction based on gaze cues typifies primates; other approaches for studying how they process attention cues are indicated.
|
|
|
Aureli, F., Preston, S. D., & de Waal, F. B. (1999). Heart rate responses to social interactions in free-moving rhesus macaques (Macaca mulatta): a pilot study. J Comp Psychol, 113(1), 59–65.
Abstract: Heart rate telemetry was explored as a means to access animal emotion during social interactions under naturalistic conditions. Heart rates of 2 middle-ranking adult females living in a large group of rhesus macaques (Macaca mulatta) were recorded along with their behavior. Heart rate changes during 2 types of interactions were investigated, while controlling for the effects of posture and activity. The risk of aggression associated with the approach of a dominant individual was expected to provoke anxiety in the approachee. This prediction was supported by the heart rate increase after such an approach. No increase was found when the approacher was a kin or a subordinate individual. The tension-reduction function of allogrooming was also supported. Heart rate decelerated faster during the receipt of grooming than in matched control periods.
|
|
|
Barrett, L., & Henzi, P. (2005). The social nature of primate cognition. Proc Biol Sci, 272(1575), 1865–1875.
Abstract: The hypothesis that the enlarged brain size of the primates was selected for by social, rather than purely ecological, factors has been strongly influential in studies of primate cognition and behaviour over the past two decades. However, the Machiavellian intelligence hypothesis, also known as the social brain hypothesis, tends to emphasize certain traits and behaviours, like exploitation and deception, at the expense of others, such as tolerance and behavioural coordination, and therefore presents only one view of how social life may shape cognition. This review outlines work from other relevant disciplines, including evolutionary economics, cognitive science and neurophysiology, to illustrate how these can be used to build a more general theoretical framework, incorporating notions of embodied and distributed cognition, in which to situate questions concerning the evolution of primate social cognition.
|
|
|
Barry, K. L., & Goth, A. (2006). Call recognition in chicks of the Australian brush-turkey (Alectura lathami). Anim. Cogn., 9(1), 47–54.
Abstract: Most birds rely on imprinting and experience with conspecifics to learn species-specific recognition cues. Australian brush-turkeys (Alectura lathami) do not imprint and form no bonds with parents. They hatch asynchronously, disperse widely and meet juvenile conspecifics at an unpredictable age. Nevertheless, in captivity, hatchlings respond to other chicks. A recent study, which involved the use of robotic models, found that chicks prefer to approach robots that emit specific visual cues. Here, we evaluated their response to acoustic cues, which usually play an important role in avian social cognition. However, in simultaneous choice tests, neither 2-day-old nor 9-day-old chicks preferred the choice arm with playback of either chick or adult conspecific calls over the arm containing a silent loudspeaker. Chicks of both age classes, however, scanned their surroundings more during chick playback, and the response was thus consistent in younger and older chicks. We also presented the chicks with robotic models, either with or without playback of chick calls. They did not approach the calling robot more than they did the silent robot, indicating that the combination of visual and acoustic cues does not evoke a stronger response. These results will allow further comparison with species that face similar cognitive demands in the wild, such as brood parasites. Such a comparative approach, which is the focus of cognitive ecology, will enable us to further analyse the evolution and adaptive value of species recognition abilities.
|
|