|
de Cocq, P., van Weeren, P. R., & Back, W. (2006). Saddle pressure measuring: Validity, reliability and power to discriminate between different saddle-fits. The Veterinary Journal, 172(2), 265–273.
Abstract: Saddle-fit is recognised as an important factor in the pathogenesis of back problems in horses and is empirically being evaluated by pressure measurements in clinical practice, although not much is known about the validity, reliability and usability of these devices in the equine field. This study was conducted to assess critically a pressure measurement system marketed for evaluating saddle fit. Validity was tested by calculating the correlation coefficient between total measured pressure and the weight of 28 different riders. Reliability and discriminative power with respect to different saddle fitting methods were evaluated in a highly standardised, paired measurement set-up in which saddle-fit was quantified by air-pressure values inside the panels of the saddle. Total pressures under the saddle correlated well with riders’ weight. A large increase in over-day sensor variation was found. Within trial intra-class correlation coefficients (ICCs) were excellent, but the between trial ICCs varied from poor to excellent and the variation in total pressure was high. In saddles in which the fit was adjusted to individual asymmetries of the horse, the pressure measurement device was able to detect correctly air-pressure differences between the two panels in the back area of the saddle, but not in the front area. The device yielded valid results, but was only reliable in highly standardised conditions. The results question the indiscriminate use of current saddle pressure measurement devices for the quantitative assessment of saddle-fit under practical conditions and suggest that further technical improvement may be necessary.
|
|
|
Dyson, S. (2022). The Ridden Horse Pain Ethogram. Equine Vet Educ, 34(7), 372–380.
Abstract: Summary The Ridden Horse Pain Ethogram (RHpE) comprises 24 behaviours, the majority of which are at least 10 times more likely to be seen in lame horses compared with non-lame horses. The observation of >=8/24 behaviours is likely to reflect the presence of musculoskeletal pain, although some lame horses score <8/24 behaviours. A marked reduction in RHpE scores after resolution of lameness using diagnostic anaesthesia proves a causal relationship between pain and RHpE scores. Horses should be assessed for approximately 10?min in walk, trot (including 10?m diameter circles), canter and transitions. The validity of the RHpE has been verified for use in horses which perform dressage-type movements, and which have been trained to work with the front of the head in a vertical position. It has not, as yet, been used in horses while jumping, racehorses, western performance or endurance horses. The RHpE provides a valuable tool for riders, trainers, veterinarians and other equine professionals to recognise the presence of musculoskeletal pain, even if overt lameness cannot be recognised. Riders with a higher skill-level may improve gait quality, but cannot obscure behavioural signs of pain, although specific behaviours may change. Tight saddle tree points, the rider sitting on the caudal third of the saddle and rider weight may influence RHpE scores. Accurate application of the RHpE requires training and practice. The RHpE is a powerful tool for the assessment of ridden horses and the identification of likely musculoskeletal pain. Such pain merits further investigation and treatment, to improve equine welfare and performance. The RHpE provides an additional means of evaluating the response to diagnostic anaesthesia. It provides a mechanism for client education and a diplomatic way of communicating with clients about equine discomfort related to saddle-fit, rider size, their position in the saddle and ability to ride in balance.
|
|
|
Geutjens, C. A., Clayton, H. M., & Kaiser, L. J. (2008). Forces and pressures beneath the saddle during mounting from the ground and from a raised mounting platform. The Veterinary Journal, 175(3), 332–337.
Abstract: The objective was to use an electronic pressure mat to measure and compare forces and pressures of the saddle on a horse's back when riders mounted from the ground and with the aid of a mounting platform. Ten riders mounted a horse three times each from the ground and from a 35 cm high mounting platform in random order. Total force (summation of forces over all 256 sensors) was measured and compared at specific points on the force-time curve. Total force was usually highest as the rider's right leg was swinging upwards and was correlated with rider mass. When normalized to rider mass, total force and peak pressure were significantly higher when mounting from the ground than from a raised platform (P < 0.05). The area of highest pressure was on the right side of the withers in 97% of mounting efforts, confirming the importance of the withers in stabilizing the saddle during mounting.
|
|
|
Meschan, E. M., Peham, C., Schobesberger, H., & Licka, T. F. (2007). The influence of the width of the saddle tree on the forces and the pressure distribution under the saddle. The Veterinary Journal, 173(3), 578–584.
Abstract: As there is no statistical evidence that saddle fit influences the load exerted on a horse's back this study was performed to assess the hypothesis that the width of the tree significantly alters the pressure distribution on the back beneath the saddle. Nineteen sound horses were ridden at walk and trot on a treadmill with three saddles differing only in tree width. Kinetic data were recorded by a sensor mat. A minimum of 14 motion cycles were used in each trial. The saddles were classified into four groups depending on fit. For each horse, the saddle with the lowest overall force (LOF) was determined. Saddles were classified as “too-narrow” if they were one size (2 cm) narrower than the LOF saddle, and “too-wide” if they were one size (2 cm) wider than the LOF saddle. Saddles two sizes wider than LOF saddles were classified as “very-wide”. In the group of narrow saddles, the pressure in the caudal third (walk 0.63 N/cm2 +/- 0.10; trot 1.08 N/cm2 +/- 0.26) was significantly higher compared to the LOF saddles (walk 0.50 N/cm2 +/- 0.09; trot 0.86 N/cm2 +/- 0.28). In the middle transversal third, the pressure of the wide saddles (walk 0.73 N/cm2 +/- 0.06; trot 1.52 N/cm2 +/- 0.19) and very-wide saddles (walk 0.77 N/cm2 +/- 0.06; trot 1.57 N/cm2 +/- 0.19) was significantly higher compared to LOF saddles (walk 0.65 N/cm2 +/- 0.10/ 0.63 N/cm2 +/- 0.11; trot 1.33 N/cm2 +/- 0.22/1.27 N/cm2 +/- 0.20). This study demonstrates that the load under poorly fitting saddles is distributed over a smaller area than under properly fitting saddles, leading to potentially harmful pressures peaks.
|
|
|
Normando, S., Meers, L., Samuels, W. E., Faustini, M., & Ödberg, F. O. (2011). Variables affecting the prevalence of behavioural problems in horses. Can riding style and other management factors be significant? Appl. Anim. Behav. Sci., 133(3-4), 186–198.
Abstract: The effects of riding style and various management factors on the prevalence of stereotypies and other behavioural problems among 346 mixed-breed saddle horses (phase 1) and 101 Arabian horses (phase 2) were analysed through a questionnaire answered by owners. In phase 1, the questionnaire data were partially validated through 20-min observations of 81 (23.3%) of the cases. Results indicate that horses primarily ridden in the English style were reported to be significantly more likely to display stereotypies (p < 0.001), problems when transported (p = 0.001), multiple behavioural problems (p < 0.001), and to have more restrictive stabling (p < 0.001) than horses ridden with other styles. When only Arabian horses were assessed in phase 2, however, there was no significant difference in behavioural problems between the Arabian horses ridden English style versus other riding styles. However Arabian horses were housed less restrictively than horses in phase 1 and English riding style and restrictive stabling tended to exacerbate each other's association with stereotypies. Management-related effects were found when, e.g., horses housed in restrictive stabling were more frequently reported to show locomotion stereotypies (p = 0.02) and those denied ad libitum hay displayed stereotypic wood-chewing behaviour (p = 0.02). To aid diagnosing and prioritizing interventions and care, the most predictive subsets of factors were computed for the various problem behaviours. E.g., among saddle horses, a statistical model comprised of the main riding style, duration of access to a paddock, and horse's age predicted whether a horse was reported to display any behavioural problem 62% of the time. This study supports the effects of management and handling on the prevalence of behavioural problems, and helps prioritize the relative importance of broad management categories on equine welfare. In particular, it underscores the importance of riding style on the well-being of saddle horses.
|
|
|
von Peinen, K., Wiestner, T., Bogisch, S., Roepstorff, L., Van Weeren, P. R., & Weishaupt, M. A. (2009). Relationship between the forces acting on the horse's back and the movements of rider and horse while walking on a treadmill. Equine Veterinary Journal, 41(3), 285–291.
Abstract: Reasons for performing study: The exact relationship between the saddle pressure pattern during one stride cycle and the movements of horse and rider at the walk are poorly understood and have never been investigated in detail. Hypothesis: The movements of rider and horse account for the force distribution pattern under the saddle. Method: Vertical ground reaction forces (GRF), kinematics of horse and rider as well as saddle forces (FS) were measured synchronously in 7 high level dressage horses while being ridden on an instrumented treadmill at walk. Discrete values of the total saddle forces (FStot) were determined for each stride and related to kinematics and GRF. The pressure sensitive mat was divided into halves and sixths to assess the force distribution over the horse's back in more detail. Differences were tested using a one sample t test (P<0.05). Results: FStot of all the horses showed 3 peaks (P1-P3) and 3 minima (M1-M3) in each half-cycle, which were systematically related to the footfall sequence of the walk. Looking at the halves of the mat, force curves were 50% phase-shifted. The analysis of the FS of the 6 sections showed a clear association to the rider's and horse's movements. Conclusion: The saddle force distribution during an entire stride cycle has a distinct pattern although the force fluctuations of the FStot are small. The forces in the front thirds were clearly related to the movement of the front limbs, those in the mid part to the lateral flexion of the horse's spine and the loading of the hind part was mainly influenced by the axial rotation and lateral bending of the back. Potential relevance: These data can be used as a reference for comparing different types of saddle fit.
|
|
|
Von PEINEN, K., Wiestner, T., Von RECHENBERG, B., & Weishaupt, M. A. (2010). Relationship between saddle pressure measurements and clinical signs of saddle soreness at the withers. Equine Veterinary Journal, 42, 650–653.
Abstract: Reasons for performing the study: Similar to human decubitus ulcers, local high pressure points from ill-fitting saddles induce perfusion disturbances of different degrees resulting in tissue hypoxia and alteration in sweat production. Objective: To relate the different clinical manifestations of saddle sores to the magnitude of saddle pressures at the location of the withers. Methods: Sixteen horses with dry spots after exercise (Group A) and 7 cases presented with acute clinical signs of saddle pressure in the withers area (Group B) were compared with a control group of 16 sound horses with well fitting saddles (Group C). All horses underwent a saddle pressure measurement at walk, trot and canter. Mean and maximal pressures in the area of interest were compared between groups within each gait. Results: Mean pressures differed significantly between groups in all 3 gaits. Maximal pressure differed between groups at trot; at walk and canter, however, the only significant difference was between Group C and Groups A and B, respectively, (P>0.05). Mean and maximal pressures at walk in Group A were 15.3 and 30.6 kPa, in Group B 24.0 and 38.9 kPa and in Group C 7.8 and 13.4 kPa, respectively; at trot in Group A 18.1 and 43.4 kPa, in Group B 29.7 and 53.3 kPa and in Group C 9.8 and 21.0 kPa, respectively; and at canter in Group A 21.4 and 48.9 kPa, in Group B 28.6 and 56.0 kPa and in Group C 10.9 and 24.7 kPa, respectively. Conclusion: The study shows that there is a distinguishable difference between the 3 groups regarding the mean pressure value, in all gaits.
|
|